Surface form inspection with contact coordinate measurement: a review

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-04-12 DOI:10.1088/2631-7990/acc76e
Yijun Shen, Jieji Ren, Nuodi Huang, Yang Zhang, Xinquan Zhang, Limin Zhu
{"title":"Surface form inspection with contact coordinate measurement: a review","authors":"Yijun Shen, Jieji Ren, Nuodi Huang, Yang Zhang, Xinquan Zhang, Limin Zhu","doi":"10.1088/2631-7990/acc76e","DOIUrl":null,"url":null,"abstract":"Parts with high-quality freeform surfaces have been widely used in industries, which require strict quality control during the manufacturing process. Among all the industrial inspection methods, contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy, robustness, and universality. In this paper, the existing research in the contact measurement field is systematically reviewed. First, different configurations of the measuring machines are introduced in detail, which may have influence on the corresponding sampling and inspection path generation criteria. Then, the entire inspection pipeline is divided into two stages, namely the pre-inspection and post-inspection stages. The typical methods of each sub-stage are systematically overviewed and classified, including sampling, accessibility analysis, inspection path generation, probe tip radius compensation, surface reconstruction, and uncertainty analysis. Apart from those classical research, the applications of the emerging deep learning technique in some specific tasks of measurement are introduced. Furthermore, some potential and promising trends are provided for future investigation.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acc76e","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

Parts with high-quality freeform surfaces have been widely used in industries, which require strict quality control during the manufacturing process. Among all the industrial inspection methods, contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy, robustness, and universality. In this paper, the existing research in the contact measurement field is systematically reviewed. First, different configurations of the measuring machines are introduced in detail, which may have influence on the corresponding sampling and inspection path generation criteria. Then, the entire inspection pipeline is divided into two stages, namely the pre-inspection and post-inspection stages. The typical methods of each sub-stage are systematically overviewed and classified, including sampling, accessibility analysis, inspection path generation, probe tip radius compensation, surface reconstruction, and uncertainty analysis. Apart from those classical research, the applications of the emerging deep learning technique in some specific tasks of measurement are introduced. Furthermore, some potential and promising trends are provided for future investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用接触坐标测量法检测表面形状:回顾
具有高质量自由曲面的零件在工业中得到了广泛的应用,在制造过程中需要严格的质量控制。在所有的工业检测方法中,利用三坐标测量机或计算机数控机床进行接触测量具有精度高、鲁棒性好、通用性强等优点,是一项基础技术。本文系统地综述了接触式测量领域的研究现状。首先,详细介绍了测量机的不同配置,这些配置可能会影响相应的采样和检测路径生成准则。然后,将整个检验流程分为两个阶段,即预检验和后检验阶段。对采样、可达性分析、检测路径生成、探针尖端半径补偿、表面重构和不确定度分析等各子阶段的典型方法进行了系统的概述和分类。除了这些经典研究外,还介绍了新兴的深度学习技术在一些具体测量任务中的应用。此外,还提出了一些有潜力和前景的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1