{"title":"Numerical radius points of ${\\mathcal L}(^m l_{\\infty}^n:l_{\\infty}^n)$","authors":"Sung Guen Kim","doi":"10.53733/179","DOIUrl":null,"url":null,"abstract":"For $n\\geq 2$ and a real Banach space $E,$ ${\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\Pi(E)=\\Big\\{~[x^*, (x_1, \\ldots, x_n)]: x^{*}(x_j)=\\|x^{*}\\|=\\|x_j\\|=1~\\mbox{for}~{j=1, \\ldots, n}~\\Big\\}.$$For $T\\in {\\mathcal L}(^n E:E),$ we define $${\\rm Nrad}({T})=\\Big\\{~[x^*, (x_1, \\ldots, x_n)]\\in \\Pi(E): |x^{*}(T(x_1, \\ldots, x_n))|=v(T)~\\Big\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\ldots, x_n)]\\in \\Pi(E)$ that satisfies ${\\rm Nrad}({T})=\\Big\\{~\\pm [x^{*}, (x_1, \\ldots, x_n)]~\\Big\\}.$\nIn this paper we classify ${\\rm Nrad}({T})$ for every $T\\in {\\mathcal L}(^2 l_{\\infty}^2: l_{\\infty}^2)$ in connection with the set of the norm attaining points of $T$.We also characterize all numerical radius peak mappings in ${\\mathcalL}(^m l_{\\infty}^n:l_{\\infty}^n)$ for $n, m\\geq 2,$ where $l_{\\infty}^n=\\mathbb{R}^n$ with the supremum norm.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
For $n\geq 2$ and a real Banach space $E,$ ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\Pi(E)=\Big\{~[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\Big\}.$$For $T\in {\mathcal L}(^n E:E),$ we define $${\rm Nrad}({T})=\Big\{~[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)~\Big\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ that satisfies ${\rm Nrad}({T})=\Big\{~\pm [x^{*}, (x_1, \ldots, x_n)]~\Big\}.$
In this paper we classify ${\rm Nrad}({T})$ for every $T\in {\mathcal L}(^2 l_{\infty}^2: l_{\infty}^2)$ in connection with the set of the norm attaining points of $T$.We also characterize all numerical radius peak mappings in ${\mathcalL}(^m l_{\infty}^n:l_{\infty}^n)$ for $n, m\geq 2,$ where $l_{\infty}^n=\mathbb{R}^n$ with the supremum norm.