Revanth Badveli, V. Jagadish, S. Akshaya, R. Srikanth, Francesco Petruccione
{"title":"Dynamics of Quantum Correlations in a Qubit-Oscillator System Interacting via a Dissipative Bath","authors":"Revanth Badveli, V. Jagadish, S. Akshaya, R. Srikanth, Francesco Petruccione","doi":"10.1142/S1230161220500043","DOIUrl":null,"url":null,"abstract":"The entanglement dynamics in a bipartite system consisting of a qubit and a harmonic oscillator interacting only through their coupling with the same bath is studied. The considered model assumes that the qubit is coupled to the bath via the Jaynes-Cummings interaction, whilst the position of the oscillator is coupled to the position of the bath via a dipole interaction. We give a microscopic derivation of the Gorini–Kossakowski–Sudarshan–Lindblad equation for the considered model. Based on the Kossakowski matrix, we show that non-classical correlations including entanglement can be generated by the considered dynamics. We then analytically identify specific initial states for which entanglement is generated. This result is also supported by our numerical simulations.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"6 1","pages":"2050004:1-2050004:16"},"PeriodicalIF":1.3000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161220500043","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The entanglement dynamics in a bipartite system consisting of a qubit and a harmonic oscillator interacting only through their coupling with the same bath is studied. The considered model assumes that the qubit is coupled to the bath via the Jaynes-Cummings interaction, whilst the position of the oscillator is coupled to the position of the bath via a dipole interaction. We give a microscopic derivation of the Gorini–Kossakowski–Sudarshan–Lindblad equation for the considered model. Based on the Kossakowski matrix, we show that non-classical correlations including entanglement can be generated by the considered dynamics. We then analytically identify specific initial states for which entanglement is generated. This result is also supported by our numerical simulations.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.