Query Performance Prediction for Pseudo-Feedback-Based Retrieval

Haggai Roitman, Oren Kurland
{"title":"Query Performance Prediction for Pseudo-Feedback-Based Retrieval","authors":"Haggai Roitman, Oren Kurland","doi":"10.1145/3331184.3331369","DOIUrl":null,"url":null,"abstract":"The query performance prediction task (QPP) is estimating retrieval effectiveness in the absence of relevance judgments. Prior work has focused on prediction for retrieval methods based on surface level query-document similarities (e.g., query likelihood). We address the prediction challenge for pseudo-feedback-based retrieval methods which utilize an initial retrieval to induce a new query model; the query model is then used for a second (final) retrieval. Our suggested approach accounts for the presumed effectiveness of the initially retrieved list, its similarity with the final retrieved list and properties of the latter. Empirical evaluation demonstrates the clear merits of our approach.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The query performance prediction task (QPP) is estimating retrieval effectiveness in the absence of relevance judgments. Prior work has focused on prediction for retrieval methods based on surface level query-document similarities (e.g., query likelihood). We address the prediction challenge for pseudo-feedback-based retrieval methods which utilize an initial retrieval to induce a new query model; the query model is then used for a second (final) retrieval. Our suggested approach accounts for the presumed effectiveness of the initially retrieved list, its similarity with the final retrieved list and properties of the latter. Empirical evaluation demonstrates the clear merits of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伪反馈的检索查询性能预测
查询性能预测任务(query performance prediction task, QPP)是在没有相关性判断的情况下估计检索的有效性。先前的工作集中在基于表面级查询文档相似性(例如,查询似然)的检索方法的预测上。我们解决了基于伪反馈的检索方法的预测挑战,该方法利用初始检索来诱导新的查询模型;然后将查询模型用于第二次(最终)检索。我们建议的方法考虑了最初检索列表的假定有效性、它与最终检索列表的相似性以及后者的属性。实证评估表明了我们的方法的明显优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1