Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor

Een Hutama Putra, Zulfatman Has, M. Effendy
{"title":"Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor","authors":"Een Hutama Putra, Zulfatman Has, M. Effendy","doi":"10.1109/EECSI.2018.8752768","DOIUrl":null,"url":null,"abstract":"This study aims to design a control scheme that is capable to improve performance and efficiency of brushless DC motor (BLDC) in operating condition. The control scheme is composed of sliding mode controller (SMC) with proportional-integral-derivative (PID) sliding surface. The PID sliding surface is used to improve the system transient response. Then, the SMC-PID is optimized by genetic algorithm optimization for further improvement on the stability and robustness against nonlinearities and disturbances. Chattering problem that appear in the SMC is minimized by employing an adaptive switching gain for the SMC that is integrated with Luenberger Observer. Lyapunov function candidate is applied to guarantee the stability of the system. Simulation on the proposed work is done in Matlab Simulink. Results of the simulation works indicate that the proposed control scheme can improve the transient response, the stability and robustness of the BLDC motor compared to the conventional SMC in the existence of nonlinearities and disturbances.","PeriodicalId":6543,"journal":{"name":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","volume":"2 1","pages":"330-335"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EECSI.2018.8752768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study aims to design a control scheme that is capable to improve performance and efficiency of brushless DC motor (BLDC) in operating condition. The control scheme is composed of sliding mode controller (SMC) with proportional-integral-derivative (PID) sliding surface. The PID sliding surface is used to improve the system transient response. Then, the SMC-PID is optimized by genetic algorithm optimization for further improvement on the stability and robustness against nonlinearities and disturbances. Chattering problem that appear in the SMC is minimized by employing an adaptive switching gain for the SMC that is integrated with Luenberger Observer. Lyapunov function candidate is applied to guarantee the stability of the system. Simulation on the proposed work is done in Matlab Simulink. Results of the simulation works indicate that the proposed control scheme can improve the transient response, the stability and robustness of the BLDC motor compared to the conventional SMC in the existence of nonlinearities and disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的无刷直流电机鲁棒自适应滑模控制设计
本研究旨在设计一种能够提高无刷直流电动机(BLDC)在运行状态下的性能和效率的控制方案。该控制方案由滑模控制器(SMC)和比例-积分-导数(PID)滑动面组成。采用PID滑动面来改善系统的瞬态响应。然后,采用遗传算法对SMC-PID进行优化,进一步提高了系统的稳定性和对非线性和扰动的鲁棒性。通过对集成了Luenberger观测器的SMC采用自适应开关增益,最小化了SMC中出现的抖振问题。采用候选Lyapunov函数保证系统的稳定性。在Matlab Simulink中对所提出的工作进行了仿真。仿真结果表明,在存在非线性和扰动的情况下,与传统的SMC控制相比,所提出的控制方案可以改善无刷直流电机的瞬态响应、稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Low Noise Micro Liter Syringe Pump for Quartz Crystal Microbalance Sensor Development of Mobile Based Educational Game as a Learning Media for Basic Programming in VHS Sentiment Analysis Based on Appraisal Theory for Assessing Incumbent Electability Variance and Symmetrical-based Approach for Optimal Alignment of 3D Model Comparison of LFC Optimization on Micro-hydro using PID, CES, and SMES based Firefly Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1