Revisiting Unsupervised Local Descriptor Learning

Wu‐ru Wang, Lei Zhang, Hua Huang
{"title":"Revisiting Unsupervised Local Descriptor Learning","authors":"Wu‐ru Wang, Lei Zhang, Hua Huang","doi":"10.1609/aaai.v37i3.25367","DOIUrl":null,"url":null,"abstract":"Constructing accurate training tuples is crucial for unsupervised local descriptor learning, yet challenging due to the absence of patch labels. The state-of-the-art approach constructs tuples with heuristic rules, which struggle to precisely depict real-world patch transformations, in spite of enabling fast model convergence. A possible solution to alleviate the problem is the clustering-based approach, which can capture realistic patch variations and learn more accurate class decision boundaries, but suffers from slow model convergence. This paper presents HybridDesc, an unsupervised approach that learns powerful local descriptor models with fast convergence speed by combining the rule-based and clustering-based approaches to construct training tuples. In addition, HybridDesc also contributes two concrete enhancing mechanisms: (1) a Differentiable Hyperparameter Search (DHS) strategy to find the optimal hyperparameter setting of the rule-based approach so as to provide accurate prior for the clustering-based approach, (2) an On-Demand Clustering (ODC) method to reduce the clustering overhead of the clustering-based approach without eroding its advantage. Extensive experimental results show that HybridDesc can efficiently learn local descriptors that surpass existing unsupervised local descriptors and even rival competitive supervised ones.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"26 1","pages":"2680-2688"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i3.25367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing accurate training tuples is crucial for unsupervised local descriptor learning, yet challenging due to the absence of patch labels. The state-of-the-art approach constructs tuples with heuristic rules, which struggle to precisely depict real-world patch transformations, in spite of enabling fast model convergence. A possible solution to alleviate the problem is the clustering-based approach, which can capture realistic patch variations and learn more accurate class decision boundaries, but suffers from slow model convergence. This paper presents HybridDesc, an unsupervised approach that learns powerful local descriptor models with fast convergence speed by combining the rule-based and clustering-based approaches to construct training tuples. In addition, HybridDesc also contributes two concrete enhancing mechanisms: (1) a Differentiable Hyperparameter Search (DHS) strategy to find the optimal hyperparameter setting of the rule-based approach so as to provide accurate prior for the clustering-based approach, (2) an On-Demand Clustering (ODC) method to reduce the clustering overhead of the clustering-based approach without eroding its advantage. Extensive experimental results show that HybridDesc can efficiently learn local descriptors that surpass existing unsupervised local descriptors and even rival competitive supervised ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回顾无监督局部描述符学习
构建准确的训练元组对于无监督局部描述符学习至关重要,但由于缺乏补丁标签而具有挑战性。最先进的方法构建具有启发式规则的元组,尽管能够实现快速模型收敛,但难以精确描述现实世界的补丁转换。缓解这个问题的一个可能的解决方案是基于聚类的方法,该方法可以捕获真实的补丁变化并学习更准确的类决策边界,但存在模型收敛缓慢的问题。HybridDesc是一种无监督的方法,它结合基于规则和基于聚类的方法来构造训练元组,学习功能强大的局部描述符模型,收敛速度快。此外,HybridDesc还提供了两种具体的增强机制:(1)可微分超参数搜索(DHS)策略,用于寻找基于规则的方法的最优超参数设置,从而为基于聚类的方法提供准确的先验;(2)按需聚类(ODC)方法,用于减少基于聚类的方法的聚类开销,同时又不损害其优势。大量的实验结果表明,HybridDesc可以有效地学习超越现有无监督局部描述符甚至竞争的有监督局部描述符的局部描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open-Set Heterogeneous Domain Adaptation: Theoretical Analysis and Algorithm. Step-Calibrated Diffusion for Biomedical Optical Image Restoration. Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness. A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial. Learning Physics Informed Neural ODEs with Partial Measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1