Adaptive exploration for large-scale protein analysis in the molecular dynamics database

Sarana Nutanong, N. Carey, Yanif Ahmad, A. Szalay, T. Woolf
{"title":"Adaptive exploration for large-scale protein analysis in the molecular dynamics database","authors":"Sarana Nutanong, N. Carey, Yanif Ahmad, A. Szalay, T. Woolf","doi":"10.1145/2484838.2484872","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulations generate detailed time-series data of all-atom motions. These simulations are leading users of the world's most powerful supercomputers, and are standard-bearers for a wide range of high-performance computing (HPC) methods. However, MD data exploration and analysis is in its infancy in terms of scalability, ease-of-use, and ultimately its ability to answer 'grand challenge' science questions. This demonstration introduces the Molecular Dynamics Database (MDDB) project at Johns Hopkins, to study the co-design of database methods for deep on-the-fly exploratory MD analyses with HPC simulations. Data exploration in MD suffers from a \"human bottleneck\", where the laborious administration of simulations leaves little room for domain experts to focus on tackling science questions. MDDB exploits the data-rich nature of MD simulations to provide adaptive control of the exploration process with machine learning techniques, specifically reinforcement learning (RL). We present MDDB's data and queries, architecture, and its use of RL methods. Our audience will co-operate with our steering algorithm and science partners, and witness MDDB's abilities to significantly reduce exploration times and direct computation resources to where they best address science questions.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"3 1","pages":"45:1-45:4"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Molecular dynamics (MD) simulations generate detailed time-series data of all-atom motions. These simulations are leading users of the world's most powerful supercomputers, and are standard-bearers for a wide range of high-performance computing (HPC) methods. However, MD data exploration and analysis is in its infancy in terms of scalability, ease-of-use, and ultimately its ability to answer 'grand challenge' science questions. This demonstration introduces the Molecular Dynamics Database (MDDB) project at Johns Hopkins, to study the co-design of database methods for deep on-the-fly exploratory MD analyses with HPC simulations. Data exploration in MD suffers from a "human bottleneck", where the laborious administration of simulations leaves little room for domain experts to focus on tackling science questions. MDDB exploits the data-rich nature of MD simulations to provide adaptive control of the exploration process with machine learning techniques, specifically reinforcement learning (RL). We present MDDB's data and queries, architecture, and its use of RL methods. Our audience will co-operate with our steering algorithm and science partners, and witness MDDB's abilities to significantly reduce exploration times and direct computation resources to where they best address science questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子动力学数据库中大规模蛋白质分析的自适应探索
分子动力学(MD)模拟生成全原子运动的详细时间序列数据。这些模拟是世界上最强大的超级计算机的领先用户,也是各种高性能计算(HPC)方法的标准推动者。然而,医学数据探索和分析在可扩展性、易用性以及最终回答“重大挑战”科学问题的能力方面还处于起步阶段。本演示介绍了约翰霍普金斯大学的分子动力学数据库(MDDB)项目,以研究数据库方法的协同设计,用于深入的实时探索性MD分析和HPC模拟。医学领域的数据探索受到了“人为瓶颈”的困扰,繁重的模拟管理使领域专家没有多少空间专注于解决科学问题。MDDB利用MD模拟的丰富数据特性,通过机器学习技术,特别是强化学习(RL),为勘探过程提供自适应控制。我们介绍了MDDB的数据和查询、体系结构以及它对RL方法的使用。我们的观众将与我们的转向算法和科学合作伙伴合作,并见证MDDB显著减少探索时间和将计算资源引导到最适合解决科学问题的地方的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1