L S Afinisha Deepam, M. Krishnan, S AswathySudhakar, S PaulrajL
{"title":"Electro-spun nano fiber of carboxymethyl cellulose – curcumin and its applications","authors":"L S Afinisha Deepam, M. Krishnan, S AswathySudhakar, S PaulrajL","doi":"10.37022/wjcmpr.v3i4.184","DOIUrl":null,"url":null,"abstract":"Cellulose is a prominent scaffolding polysaccharide found in plants as micro fibrils which form the structurally strong framework in the cell walls. It has wide variety of uses such as attacking agent, emulsifier, stabilizer etc. Its use can be further enhanced by converting cellulose into cellulose derivatives. One of the most important cellulose derivatives is carboxy methyl cellulose (CMC). In the present study, cellulose is converted to CMC thereby preparing CMC – curcumin nanofiber by using electro spinning method. The functional groups identification was done by using UV Visible spectroscopy and FT-IR. Surface structure was analyzed by using Scanning Electron Microscopy. The antifungal activity was studied against Aspergillus niger and Candida albicans. . The antibacterial activities also studied for the samples against E.coli, Klebsiella pneumonia, Streptococcus mutans and Staphylococcus aureus.","PeriodicalId":23642,"journal":{"name":"World Journal of Current Medical and Pharmaceutical Research","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Current Medical and Pharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37022/wjcmpr.v3i4.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose is a prominent scaffolding polysaccharide found in plants as micro fibrils which form the structurally strong framework in the cell walls. It has wide variety of uses such as attacking agent, emulsifier, stabilizer etc. Its use can be further enhanced by converting cellulose into cellulose derivatives. One of the most important cellulose derivatives is carboxy methyl cellulose (CMC). In the present study, cellulose is converted to CMC thereby preparing CMC – curcumin nanofiber by using electro spinning method. The functional groups identification was done by using UV Visible spectroscopy and FT-IR. Surface structure was analyzed by using Scanning Electron Microscopy. The antifungal activity was studied against Aspergillus niger and Candida albicans. . The antibacterial activities also studied for the samples against E.coli, Klebsiella pneumonia, Streptococcus mutans and Staphylococcus aureus.