{"title":"BiRD: Race Detection in Software Binaries under Relaxed Memory Models","authors":"Ridhi Jain, Rahul Purandare, Subodh Sharma","doi":"10.1145/3498538","DOIUrl":null,"url":null,"abstract":"Instruction reordering and interleavings in program execution under relaxed memory semantics result in non-intuitive behaviors, making it difficult to provide assurances about program correctness. Studies have shown that up to 90% of the concurrency bugs reported by state-of-the-art static analyzers are false alarms. As a result, filtering false alarms and detecting real concurrency bugs is a challenging problem. Unsurprisingly, this problem has attracted the interest of the research community over the past few decades. Nonetheless, many of the existing techniques rely on analyzing source code, rarely consider the effects introduced by compilers, and assume a sequentially consistent memory model. In a practical setting, however, developers often do not have access to the source code, and even commodity architectures such as x86 and ARM are not sequentially consistent. In this work, we present Bird, a prototype tool, to dynamically detect harmful data races in x86 binaries under relaxed memory models, TSO and PSO. Bird employs source-DPOR to explore all distinct feasible interleavings for a multithreaded application. Our evaluation of Bird on 42 publicly available benchmarks and its comparison with the state-of-the-art tools indicate Bird’s potential in effectively detecting data races in software binaries.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"86 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Instruction reordering and interleavings in program execution under relaxed memory semantics result in non-intuitive behaviors, making it difficult to provide assurances about program correctness. Studies have shown that up to 90% of the concurrency bugs reported by state-of-the-art static analyzers are false alarms. As a result, filtering false alarms and detecting real concurrency bugs is a challenging problem. Unsurprisingly, this problem has attracted the interest of the research community over the past few decades. Nonetheless, many of the existing techniques rely on analyzing source code, rarely consider the effects introduced by compilers, and assume a sequentially consistent memory model. In a practical setting, however, developers often do not have access to the source code, and even commodity architectures such as x86 and ARM are not sequentially consistent. In this work, we present Bird, a prototype tool, to dynamically detect harmful data races in x86 binaries under relaxed memory models, TSO and PSO. Bird employs source-DPOR to explore all distinct feasible interleavings for a multithreaded application. Our evaluation of Bird on 42 publicly available benchmarks and its comparison with the state-of-the-art tools indicate Bird’s potential in effectively detecting data races in software binaries.