Decidable verification under a causally consistent shared memory

O. Lahav, Udi Boker
{"title":"Decidable verification under a causally consistent shared memory","authors":"O. Lahav, Udi Boker","doi":"10.1145/3385412.3385966","DOIUrl":null,"url":null,"abstract":"Causal consistency is one of the most fundamental and widely used consistency models weaker than sequential consistency. In this paper, we study the verification of safety properties for finite-state concurrent programs running under a causally consistent shared memory model. We establish the decidability of this problem for a standard model of causal consistency (called also \"Causal Convergence\" and \"Strong-Release-Acquire\"). Our proof proceeds by developing an alternative operational semantics, based on the notion of a thread potential, that is equivalent to the existing declarative semantics and constitutes a well-structured transition system. In particular, our result allows for the verification of a large family of programs in the Release/Acquire fragment of C/C++11 (RA). Indeed, while verification under RA was recently shown to be undecidable for general programs, since RA coincides with the model we study here for write/write-race-free programs, the decidability of verification under RA for this widely used class of programs follows from our result. The novel operational semantics may also be of independent use in the investigation of weakly consistent shared memory models and their verification.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3385966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Causal consistency is one of the most fundamental and widely used consistency models weaker than sequential consistency. In this paper, we study the verification of safety properties for finite-state concurrent programs running under a causally consistent shared memory model. We establish the decidability of this problem for a standard model of causal consistency (called also "Causal Convergence" and "Strong-Release-Acquire"). Our proof proceeds by developing an alternative operational semantics, based on the notion of a thread potential, that is equivalent to the existing declarative semantics and constitutes a well-structured transition system. In particular, our result allows for the verification of a large family of programs in the Release/Acquire fragment of C/C++11 (RA). Indeed, while verification under RA was recently shown to be undecidable for general programs, since RA coincides with the model we study here for write/write-race-free programs, the decidability of verification under RA for this widely used class of programs follows from our result. The novel operational semantics may also be of independent use in the investigation of weakly consistent shared memory models and their verification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
因果一致共享内存下的可确定验证
因果一致性是最基本和最广泛使用的一致性模型之一,比顺序一致性弱。本文研究了在因果一致共享内存模型下运行的有限状态并发程序的安全性验证问题。我们为因果一致性的标准模型(也称为“因果收敛”和“强-释放-获取”)建立了这个问题的可决性。我们的证明通过开发一种可选的操作语义来进行,该语义基于线程势的概念,与现有的声明性语义等效,并构成结构良好的转换系统。特别是,我们的结果允许在C/ c++ 11 (RA)的Release/Acquire片段中验证一个大的程序族。事实上,虽然RA下的验证最近被证明对一般程序是不可判定的,但由于RA与我们在这里研究的写/无写竞争程序的模型相吻合,因此对于这类广泛使用的程序,RA下验证的可判定性遵循我们的结果。这种新的操作语义也可以独立用于弱一致性共享内存模型的研究及其验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Type error feedback via analytic program repair Inductive sequentialization of asynchronous programs Decidable verification under a causally consistent shared memory SympleGraph: distributed graph processing with precise loop-carried dependency guarantee Debug information validation for optimized code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1