Yanxing Ji, Wei Yan, Yang Zhao, Chao Huang, Shijin Li, Jianming Zhou, Xingfa Liu
{"title":"A New Method for Crosstalk Prediction Between Triple-twisted Strand (Uniform and Non-uniform) and Signal Wire based on CDBAS-BPNN Algorithm","authors":"Yanxing Ji, Wei Yan, Yang Zhao, Chao Huang, Shijin Li, Jianming Zhou, Xingfa Liu","doi":"10.47037/2020.ACES.J.360101","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel crosstalk prediction method between the triple-twisted strand (uniform and non-uniform) and the signal wire, that is, using back-propagation neural network optimized by the beetle antennae search algorithm based on chaotic\ndisturbance mechanism (CDBAS-BPNN) to extract the per unit length (p.u.l) parameter matrix, and combined with the chain parameter method to obtain crosstalk. Firstly, the geometric model and cross-sectional model between the uniform triple-twisted strand and the signal wire are established, and the corresponding model between the non-uniform triple-twisted strand and the signal wire is obtained by the Monte Carlo (MC) method. Then, the beetle antennae search algorithm based on chaotic disturbance mechanism (CDBAS) and backpropagation neural network (BPNN) are combined to\nconstruct a new extraction network of the p.u.l parameter matrix, and the chain parameter method is combined to predict crosstalk. Finally, in the verification and analysis part of the numerical experiments, comparing the crosstalk results of CDBAS-BPNN, BAS-BPNN and Transmission Line Matrix (TLM) algorithms, it is verified that the proposed method has better accuracy for the prediction of the model.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.ACES.J.360101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel crosstalk prediction method between the triple-twisted strand (uniform and non-uniform) and the signal wire, that is, using back-propagation neural network optimized by the beetle antennae search algorithm based on chaotic
disturbance mechanism (CDBAS-BPNN) to extract the per unit length (p.u.l) parameter matrix, and combined with the chain parameter method to obtain crosstalk. Firstly, the geometric model and cross-sectional model between the uniform triple-twisted strand and the signal wire are established, and the corresponding model between the non-uniform triple-twisted strand and the signal wire is obtained by the Monte Carlo (MC) method. Then, the beetle antennae search algorithm based on chaotic disturbance mechanism (CDBAS) and backpropagation neural network (BPNN) are combined to
construct a new extraction network of the p.u.l parameter matrix, and the chain parameter method is combined to predict crosstalk. Finally, in the verification and analysis part of the numerical experiments, comparing the crosstalk results of CDBAS-BPNN, BAS-BPNN and Transmission Line Matrix (TLM) algorithms, it is verified that the proposed method has better accuracy for the prediction of the model.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.