{"title":"Adsorption-Luminescent Determination of Y(III) Using 8-oxyquinoline Derivatives Fixed on the Silica Surface","authors":"O. Buyko, V. Losev, A. F. Shimanskii","doi":"10.17516/1998-2836-0242","DOIUrl":null,"url":null,"abstract":"Silicas, sequentially modified with polyhexamethylene guanidine and 8-hydroxyquinoline‑5-sulfonic acid (SiO2-PHMG‑oxine) or 7-iodine‑8-hydroxyquinoline‑5-sulfonic acid (SiO2-PHMG‑ferron), have been proposed for the adsorption-luminescent determination of Y(III) in natural waters. Complex compounds of Y(III) are formed on the surface of adsorbents during adsorption from solutions at pH 6–7, which luminesce in a yellow-green color (λlum = 485 nm (SiO2-PHMG‑oxine) and λlum = 490 nm (SiO2-PHMG‑ferron)). This is the basis for the method of its sorption-luminescent determination. The detection limit of Y(III), calculated according to the 3s criterion, is 1 μg/L (SiO2-PHMG‑oxine) and 2 μg/L (SiO2-PHMG‑ferron), the analytical range is 4–400 μg/L (SiO2-PHMG‑oxine) and 6–500 μg/L (SiO2-PHMG‑ferron). The developed methods were tested in the determination of yttrium in the Yenisei and Kacha rivers of the Krasnoyarsk Krai","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicas, sequentially modified with polyhexamethylene guanidine and 8-hydroxyquinoline‑5-sulfonic acid (SiO2-PHMG‑oxine) or 7-iodine‑8-hydroxyquinoline‑5-sulfonic acid (SiO2-PHMG‑ferron), have been proposed for the adsorption-luminescent determination of Y(III) in natural waters. Complex compounds of Y(III) are formed on the surface of adsorbents during adsorption from solutions at pH 6–7, which luminesce in a yellow-green color (λlum = 485 nm (SiO2-PHMG‑oxine) and λlum = 490 nm (SiO2-PHMG‑ferron)). This is the basis for the method of its sorption-luminescent determination. The detection limit of Y(III), calculated according to the 3s criterion, is 1 μg/L (SiO2-PHMG‑oxine) and 2 μg/L (SiO2-PHMG‑ferron), the analytical range is 4–400 μg/L (SiO2-PHMG‑oxine) and 6–500 μg/L (SiO2-PHMG‑ferron). The developed methods were tested in the determination of yttrium in the Yenisei and Kacha rivers of the Krasnoyarsk Krai