{"title":"Botulinum Toxin: The Promising Future of Prostate Cancer Treatment","authors":"A. Morales","doi":"10.33696/cancerbiology.2.018","DOIUrl":null,"url":null,"abstract":"Peripheral nerves have been shown to modulate the growth and spread of tumours in the prostate, feeding both cancer cells and the stroma in the tumour environment. Several in vitro and in vivo studies have reported the effect of botulinum toxin (BT) on tumour tissue in the prostate. BT in humans has been observed to cause increased apoptosis of cancer cells, with morphological changes characterized by extensive degenerative and atrophic areas of cancer, reduced cytoplasm, and pyknotic nuclei, compared to the characteristics of cancer tissues injected with saline solution. Based on this set of physiological and pathogenic knowledge, experimental, epidemiological, and clinical evidences have been generated that demonstrates the effect of BT on the control of prostate cancer, which represents a powerful therapeutic tool that would reduce mortality from prostate cancer.","PeriodicalId":92985,"journal":{"name":"Archives of cancer biology and therapy","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of cancer biology and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/cancerbiology.2.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerves have been shown to modulate the growth and spread of tumours in the prostate, feeding both cancer cells and the stroma in the tumour environment. Several in vitro and in vivo studies have reported the effect of botulinum toxin (BT) on tumour tissue in the prostate. BT in humans has been observed to cause increased apoptosis of cancer cells, with morphological changes characterized by extensive degenerative and atrophic areas of cancer, reduced cytoplasm, and pyknotic nuclei, compared to the characteristics of cancer tissues injected with saline solution. Based on this set of physiological and pathogenic knowledge, experimental, epidemiological, and clinical evidences have been generated that demonstrates the effect of BT on the control of prostate cancer, which represents a powerful therapeutic tool that would reduce mortality from prostate cancer.