Query-Adaptive Asymmetrical Dissimilarities for Visual Object Retrieval

Cai-Zhi Zhu, H. Jégou, S. Satoh
{"title":"Query-Adaptive Asymmetrical Dissimilarities for Visual Object Retrieval","authors":"Cai-Zhi Zhu, H. Jégou, S. Satoh","doi":"10.1109/ICCV.2013.214","DOIUrl":null,"url":null,"abstract":"Visual object retrieval aims at retrieving, from a collection of images, all those in which a given query object appears. It is inherently asymmetric: the query object is mostly included in the database image, while the converse is not necessarily true. However, existing approaches mostly compare the images with symmetrical measures, without considering the different roles of query and database. This paper first measure the extent of asymmetry on large-scale public datasets reflecting this task. Considering the standard bag-of-words representation, we then propose new asymmetrical dissimilarities accounting for the different inlier ratios associated with query and database images. These asymmetrical measures depend on the query, yet they are compatible with an inverted file structure, without noticeably impacting search efficiency. Our experiments show the benefit of our approach, and show that the visual object retrieval task is better treated asymmetrically, in the spirit of state-of-the-art text retrieval.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"18 1","pages":"1705-1712"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Visual object retrieval aims at retrieving, from a collection of images, all those in which a given query object appears. It is inherently asymmetric: the query object is mostly included in the database image, while the converse is not necessarily true. However, existing approaches mostly compare the images with symmetrical measures, without considering the different roles of query and database. This paper first measure the extent of asymmetry on large-scale public datasets reflecting this task. Considering the standard bag-of-words representation, we then propose new asymmetrical dissimilarities accounting for the different inlier ratios associated with query and database images. These asymmetrical measures depend on the query, yet they are compatible with an inverted file structure, without noticeably impacting search efficiency. Our experiments show the benefit of our approach, and show that the visual object retrieval task is better treated asymmetrically, in the spirit of state-of-the-art text retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向视觉对象检索的查询自适应不对称不相似性
视觉对象检索旨在从图像集合中检索所有出现给定查询对象的图像。它本质上是不对称的:查询对象大多包含在数据库映像中,而反之则不一定正确。然而,现有的方法大多采用对称度量对图像进行比较,没有考虑查询和数据库的不同作用。本文首先测量了反映这一任务的大规模公共数据集的不对称程度。考虑到标准的词袋表示,我们提出了新的不对称不相似性,考虑到与查询和数据库图像相关的不同内嵌比。这些不对称的度量取决于查询,但它们与反向文件结构兼容,不会显著影响搜索效率。我们的实验表明了我们的方法的好处,并表明视觉对象检索任务更好地处理不对称,在最先进的文本检索的精神。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1