Design of an Optical Transfer Function Classifier based on Machine Learning and Deep Learning for Optical Scanning Holography

Meril Cyriac, M. Sheeja
{"title":"Design of an Optical Transfer Function Classifier based on Machine Learning and Deep Learning for Optical Scanning Holography","authors":"Meril Cyriac, M. Sheeja","doi":"10.1109/PN52152.2021.9598000","DOIUrl":null,"url":null,"abstract":"Optical Transfer Function in Optical Scanning Holographic (OSH) System describes the mathematical model of hologram generation frequency domain. Here a deep learning feature vector extractor is used for combining the features of the hologram to the classifiers. The classification learning is done with the regression-based machine learning models. This system works as the pupil function predictor for the generated hologram. The training is done with the given dataset for different types of pupil functions. The extracted features of the hologram determine the model prediction for pupils used and then classification of OTF is performed. The accuracy measure for different learning algorithms has been analyzed and the Ensemble Adaboost classification algorithm shows best accuracy results for the prediction of the pupils used in OSH. This classification algorithm gives an average prediction accuracy of 97.75%","PeriodicalId":6789,"journal":{"name":"2021 Photonics North (PN)","volume":"37 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN52152.2021.9598000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical Transfer Function in Optical Scanning Holographic (OSH) System describes the mathematical model of hologram generation frequency domain. Here a deep learning feature vector extractor is used for combining the features of the hologram to the classifiers. The classification learning is done with the regression-based machine learning models. This system works as the pupil function predictor for the generated hologram. The training is done with the given dataset for different types of pupil functions. The extracted features of the hologram determine the model prediction for pupils used and then classification of OTF is performed. The accuracy measure for different learning algorithms has been analyzed and the Ensemble Adaboost classification algorithm shows best accuracy results for the prediction of the pupils used in OSH. This classification algorithm gives an average prediction accuracy of 97.75%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习和深度学习的光学扫描全息传递函数分类器设计
光学扫描全息(OSH)系统中的光传递函数描述了全息图频域生成的数学模型。这里使用深度学习特征向量提取器将全息图的特征组合到分类器中。分类学习是用基于回归的机器学习模型来完成的。该系统可作为生成全息图的瞳孔功能预测器。使用给定的数据集对不同类型的瞳孔函数进行训练。提取的全息图特征决定了所使用的瞳孔模型预测,然后进行OTF分类。分析了不同学习算法的精度度量,发现Ensemble Adaboost分类算法在预测职业安全健康小学生方面具有最好的精度结果。该分类算法的平均预测准确率为97.75%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a linear K-Space Spectrometer with GRISM for Line Scanning Optical Coherence Tomography Visualization of Potato Starch Chirality with Polarization Second Harmonic Generation Microscopy Transient Stimulated Raman Chirped-Pulse Amplification (TSRCPA) as an Alternative or Complementary to OPCPA Valley-selective directional emission enabled by a plasmonic nanoantenna Molecular Beam Epitaxy Growth and Characterization of AlGaN Epilayer in the Nitrogen-rich Condition on Si Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1