Matteo Zanetti , Antonio Cammi , Carlo Fiorina , Lelio Luzzi
{"title":"A Geometric Multiscale modelling approach to the analysis of MSR plant dynamics","authors":"Matteo Zanetti , Antonio Cammi , Carlo Fiorina , Lelio Luzzi","doi":"10.1016/j.pnucene.2015.02.014","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the framework of the Generation IV International Forum (GIF-IV), six innovative concepts of nuclear reactors have been proposed as suitable to guarantee a safe, sustainable and proliferation resistant source of nuclear energy. Among these reactors, a peculiar role is played by the Molten Salt Reactor (MSR), which is the only one with a liquid and circulating fuel. This feature leads to a complex and highly coupled behaviour, which requires careful investigations, as a consequence of some unusual features like the drift of </span>Delayed Neutron Precursors<span> (DNP) along the primary circuit and heat transfer with a heat-generating fluid. The inherently coupled dynamics of the MSRs asks for innovative approaches to perform reliable transient analyses. The node-wise implicitly-coupled solution of the Partial Differential Equations (PDE) that govern the different phenomena in a reactor would offer in this sense an ideal solution. However, such an approach (hereinafter referred to as Multi-Physics – MP) requires a huge amount of computational power. In this work, we propose and assess a Geometric Multiscale approach on MSR, addressing the core modelling with a 3-D MP approach and the remaining part of the system – e.g., the cooling loop – with simplified 0-D models based on Ordinary Differential Equations (ODE). The aim is to conjugate the accuracy of the MP modelling approach with acceptable computation loads. Reference is made to the Molten Salt Reactor Experiment (MSRE), due to the availability of a detailed design and experimental data that are used for assessment and preliminary validation of the developed simulation tool.</span></p></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"83 ","pages":"Pages 82-98"},"PeriodicalIF":3.3000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnucene.2015.02.014","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197015000487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 17
Abstract
In the framework of the Generation IV International Forum (GIF-IV), six innovative concepts of nuclear reactors have been proposed as suitable to guarantee a safe, sustainable and proliferation resistant source of nuclear energy. Among these reactors, a peculiar role is played by the Molten Salt Reactor (MSR), which is the only one with a liquid and circulating fuel. This feature leads to a complex and highly coupled behaviour, which requires careful investigations, as a consequence of some unusual features like the drift of Delayed Neutron Precursors (DNP) along the primary circuit and heat transfer with a heat-generating fluid. The inherently coupled dynamics of the MSRs asks for innovative approaches to perform reliable transient analyses. The node-wise implicitly-coupled solution of the Partial Differential Equations (PDE) that govern the different phenomena in a reactor would offer in this sense an ideal solution. However, such an approach (hereinafter referred to as Multi-Physics – MP) requires a huge amount of computational power. In this work, we propose and assess a Geometric Multiscale approach on MSR, addressing the core modelling with a 3-D MP approach and the remaining part of the system – e.g., the cooling loop – with simplified 0-D models based on Ordinary Differential Equations (ODE). The aim is to conjugate the accuracy of the MP modelling approach with acceptable computation loads. Reference is made to the Molten Salt Reactor Experiment (MSRE), due to the availability of a detailed design and experimental data that are used for assessment and preliminary validation of the developed simulation tool.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.