Experimental development of a near junction microchannel heat spreader

S. Weaver, G. Mandrusiak, N. Chen, O. Boomhower, J. Brewer, Robert A. Davis, R. Vetury, H. Henry
{"title":"Experimental development of a near junction microchannel heat spreader","authors":"S. Weaver, G. Mandrusiak, N. Chen, O. Boomhower, J. Brewer, Robert A. Davis, R. Vetury, H. Henry","doi":"10.1109/ITHERM.2014.6892386","DOIUrl":null,"url":null,"abstract":"This paper describes a convection-based alternative to conduction heat spreaders that uses liquid microchannels to remove heat directly from the transistors. The concept connects microchannels etched directly into the die with a hydraulic circuit that includes a piezo-diaphragm pump, thermally-regulated autonomous flow control valves, and a high-efficiency heat exchanger to create a stand-alone, hermetically-sealed cooling module. The first part of the paper reviews the experiments performed to develop the key components in the cooling package. It describes the flow tests that measured the pressure drop characteristics of different microchannel designs, reviews the bench tests used to design the piezo-diaphragm pump, and discusses the process followed to train the shape-memory alloy used for the autonomous flow control valves. The second part presents micro Raman spectroscopy experiments that measured gate temperatures in energized GaN-on-SiC dies cooled by different microchannel designs. These measurements show that the microchannels enable up to a 50% increase in device input power over conventional conduction cooling with no increase in gate temperature. They also quantify how cooling effectiveness varies with channel geometry and show how thermal performance plateaus with increasing coolant flow rate.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"40 1","pages":"966-975"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes a convection-based alternative to conduction heat spreaders that uses liquid microchannels to remove heat directly from the transistors. The concept connects microchannels etched directly into the die with a hydraulic circuit that includes a piezo-diaphragm pump, thermally-regulated autonomous flow control valves, and a high-efficiency heat exchanger to create a stand-alone, hermetically-sealed cooling module. The first part of the paper reviews the experiments performed to develop the key components in the cooling package. It describes the flow tests that measured the pressure drop characteristics of different microchannel designs, reviews the bench tests used to design the piezo-diaphragm pump, and discusses the process followed to train the shape-memory alloy used for the autonomous flow control valves. The second part presents micro Raman spectroscopy experiments that measured gate temperatures in energized GaN-on-SiC dies cooled by different microchannel designs. These measurements show that the microchannels enable up to a 50% increase in device input power over conventional conduction cooling with no increase in gate temperature. They also quantify how cooling effectiveness varies with channel geometry and show how thermal performance plateaus with increasing coolant flow rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近结微通道散热片的实验研制
本文描述了一种基于对流的导热散热器的替代方案,它使用液体微通道直接从晶体管中除去热量。该概念将直接蚀刻到模具中的微通道与液压回路连接起来,液压回路包括一个压电隔膜泵,热调节自主流量控制阀和一个高效热交换器,以创建一个独立的密封冷却模块。论文的第一部分回顾了为开发冷却包中的关键部件所进行的实验。介绍了测量不同微通道设计压降特性的流量试验,综述了用于设计压电隔膜泵的台架试验,并讨论了用于自主流量控制阀的形状记忆合金的训练过程。第二部分介绍了微拉曼光谱实验,测量了不同微通道设计冷却的GaN-on-SiC通电模的栅极温度。这些测量表明,与传统的传导冷却相比,微通道使器件输入功率增加了50%,而栅极温度没有增加。他们还量化了冷却效率如何随通道几何形状的变化而变化,并显示了热性能如何随着冷却剂流量的增加而趋于稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1