Fractured Basement Characterization: An Integrated Approach for Play to Prospect Analysis and Resource Assessment of Basement Plays

M. Singh, S. Dubey, S. Chakraborty
{"title":"Fractured Basement Characterization: An Integrated Approach for Play to Prospect Analysis and Resource Assessment of Basement Plays","authors":"M. Singh, S. Dubey, S. Chakraborty","doi":"10.2118/194627-MS","DOIUrl":null,"url":null,"abstract":"\n This paper presents a multidomain integrated workflow that combines geophysics, borehole geology, fracture modeling, and petroleum systems analysis for characterization and resource assessment of basement plays. A 3D fracture model is developed by integrating image log interpretation and seismic data to assess the reservoir potential of fractured basement. The 3D fracture modeling is done using the discrete fracture network (DFN) approach with image log interpretation and other fracture drivers serving as the main input. The DFN is upscaled to generate fracture porosity and fracture permeability properties in a 3D grid. The upscaled fracture porosity is used to estimate the petroleum initially in place (PIIP) for the prospects. Multiple 2D petroleum system modeling is performed where large fault throws are identified from seismic interpretation. The petroleum system study helps in identification of areas with most prolific hydrocarbon generation and expulsion centers, which, coupled with the cross-fault juxtapositions, are the main locales of charging for basement reservoir. Further analysis of all the elements of basement play (i.e., source, reservoir, seal, trap, and migration) is done, and prospective areas within the basement play are delineated with high geological chance of success.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194627-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a multidomain integrated workflow that combines geophysics, borehole geology, fracture modeling, and petroleum systems analysis for characterization and resource assessment of basement plays. A 3D fracture model is developed by integrating image log interpretation and seismic data to assess the reservoir potential of fractured basement. The 3D fracture modeling is done using the discrete fracture network (DFN) approach with image log interpretation and other fracture drivers serving as the main input. The DFN is upscaled to generate fracture porosity and fracture permeability properties in a 3D grid. The upscaled fracture porosity is used to estimate the petroleum initially in place (PIIP) for the prospects. Multiple 2D petroleum system modeling is performed where large fault throws are identified from seismic interpretation. The petroleum system study helps in identification of areas with most prolific hydrocarbon generation and expulsion centers, which, coupled with the cross-fault juxtapositions, are the main locales of charging for basement reservoir. Further analysis of all the elements of basement play (i.e., source, reservoir, seal, trap, and migration) is done, and prospective areas within the basement play are delineated with high geological chance of success.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裂缝性基底表征:储层远景分析与资源评价的综合方法
本文提出了一种多领域集成工作流程,将地球物理、井眼地质、裂缝建模和油气系统分析相结合,用于表征和资源评估。将测井图像解释与地震资料相结合,建立了三维裂缝模型,对裂缝基底储层潜力进行了评价。三维裂缝建模采用离散裂缝网络(DFN)方法,图像测井解释和其他裂缝驱动因素作为主要输入。DFN经过升级,可以在三维网格中生成裂缝孔隙度和裂缝渗透率。放大裂缝孔隙度用于预估油气初始在位(PIIP)。在地震解释中识别出大型断层抛掷的地方,进行了多个二维含油气系统建模。油气系统研究有助于识别最富生排烃中心区域,这些区域与跨断层并置相结合,是基底储层充注的主要区域。进一步分析了基底储层的所有要素(即源、储层、封闭、圈闭和运移),圈定了基底储层内的远景区域,具有较高的地质成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Capability of Temperature-Only Analysis for Zonal Flow Quantification Field Operations Strategy for Installing Beam Pumping Units at 660 Wells in Just six Months Application of Radial Jet Drilling Technique with Gyro System to Enhance Reservoir Potential in Mature Sand Stone Reservoir in Assam-Arakan Basin Candidate Selection to Execution: A Detailed Case Study A Case Study on Treating Oil Contaminants and Heavy Metal of Produced Water Through Phytoremediation Using Reed Bed Technology: A Success Story of 15 Years Operation of Heglig Oil Field of Sudan Prevent Fouling and Corrosion During Mill-Out Operations: Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1