A Proposal of Energy Efficient Ferroelectric PDSOI LIF Neuron for Spiking Neural Network Applications

P. Sowparna, V. Rajakumari, K. P. Pradhan
{"title":"A Proposal of Energy Efficient Ferroelectric PDSOI LIF Neuron for Spiking Neural Network Applications","authors":"P. Sowparna, V. Rajakumari, K. P. Pradhan","doi":"10.1109/NMDC50713.2021.9677533","DOIUrl":null,"url":null,"abstract":"The proposed device is a partially depleted silicon on insulator (PD-SOI) with a ferroelectric material as a part of gate stack structure demonstrating the functions of leaky integrate and fire (LIF) neurons with a minimum energy of 9.375 pJ/spike and area of $0.25\\ \\mu \\mathrm{m}^{2}$. A high-k ferroelectric (FE) dielectric in the gate stack improves the energy performance by reducing the subthreshold swing. The scaled down area of the device helps to integrate more LIF neurons in the network. The frequency of spiking increases with increase in input voltage which is also an important function in a biological neuron. Thus, the implementation of this device in neuromorphic systems reduces the power consumption by the electronic devices and improves the overall performance.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"31 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The proposed device is a partially depleted silicon on insulator (PD-SOI) with a ferroelectric material as a part of gate stack structure demonstrating the functions of leaky integrate and fire (LIF) neurons with a minimum energy of 9.375 pJ/spike and area of $0.25\ \mu \mathrm{m}^{2}$. A high-k ferroelectric (FE) dielectric in the gate stack improves the energy performance by reducing the subthreshold swing. The scaled down area of the device helps to integrate more LIF neurons in the network. The frequency of spiking increases with increase in input voltage which is also an important function in a biological neuron. Thus, the implementation of this device in neuromorphic systems reduces the power consumption by the electronic devices and improves the overall performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于脉冲神经网络的高能效铁电PDSOI liff神经元
所提出的器件是部分耗尽的绝缘体上硅(PD-SOI)和铁电材料作为栅极堆叠结构的一部分,具有泄漏集成和火灾(LIF)神经元的功能,最小能量为9.375 pJ/spike,面积为0.25\ \mu \ mathm {m}^{2}$。栅极叠层中的高k铁电介质通过降低亚阈值摆幅提高了能量性能。该设备的缩小面积有助于在网络中集成更多的LIF神经元。尖峰频率随输入电压的增加而增加,这也是生物神经元的一个重要功能。因此,该器件在神经形态系统中的实现降低了电子器件的功耗并提高了整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology control and optimization of nano-MgO-Mg(OH)2 composite via vapor steaming for effective CO2 capture Effect of Surface Charge Model in the Characterization of Two-dimensional Hydrogenated Nanocrystalline-diamond Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Device Simulation Making ultra-active antimicrobial copper possible through surface area enhancement A Sensitive Electrochemical Biosensors Based on Glassy Carbon Electrodes Integrated with Smartphone for Prostate Cancer Detection Quantum Transport in Conductive Bacterial Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1