A Low Temperature Manufactured Portland Cement Clinker from Pulverized Waste of Fly Ash

H. Darweesh
{"title":"A Low Temperature Manufactured Portland Cement Clinker from Pulverized Waste of Fly Ash","authors":"H. Darweesh","doi":"10.11648/J.IJMSA.20200902.12","DOIUrl":null,"url":null,"abstract":"The possibility to produce both environmentally and friendly cement exclusively or solely from industrial byproducts such as pulverized fly ash (PFa) was investigated. A low clinkering temperature was attained or acquired to produce cement. It is capable to gain high early and late strength on hydration. The optimum quantities of PFa and clinkering temperature were detected. The results indicated that the higher the clinkering temperature, the higher hydration reactivity of the cement. The optimum PFa content and clinkering temperature for synthesizing cement were found to be 35 wt. % and 1350°C, respectively. The production of cement with PFa at a low clinkering temperature can save energy and natural resources consumption, landfills disposal cost and also can reduce CO2↑ emission. The formed major phases in presence of PFa are more or less the same as those of the blank as experimentally achieved and approved by the compressive strength. As the PFa content increased, the free lime contents decreased, and also the firing or clinkering temperature decreased. The optimum PFa content must not exceed than 35 wt. %, and any further increase of Pfa resulted in adverse effects on all characteristics of the produced clinker.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20200902.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The possibility to produce both environmentally and friendly cement exclusively or solely from industrial byproducts such as pulverized fly ash (PFa) was investigated. A low clinkering temperature was attained or acquired to produce cement. It is capable to gain high early and late strength on hydration. The optimum quantities of PFa and clinkering temperature were detected. The results indicated that the higher the clinkering temperature, the higher hydration reactivity of the cement. The optimum PFa content and clinkering temperature for synthesizing cement were found to be 35 wt. % and 1350°C, respectively. The production of cement with PFa at a low clinkering temperature can save energy and natural resources consumption, landfills disposal cost and also can reduce CO2↑ emission. The formed major phases in presence of PFa are more or less the same as those of the blank as experimentally achieved and approved by the compressive strength. As the PFa content increased, the free lime contents decreased, and also the firing or clinkering temperature decreased. The optimum PFa content must not exceed than 35 wt. %, and any further increase of Pfa resulted in adverse effects on all characteristics of the produced clinker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉煤灰废粉低温制备硅酸盐水泥熟料
研究了完全或完全从工业副产品如粉煤灰粉(PFa)中生产环境友好型水泥的可能性。达到或获得较低的熟化温度以生产水泥。它能在水化作用下获得较高的早、晚强度。确定了最佳PFa用量和最佳熟化温度。结果表明,熟化温度越高,水泥的水化反应活性越高。合成水泥的最佳PFa含量和熟化温度分别为35 wt. %和1350℃。采用PFa在低熟化温度下生产水泥,可以节约能源和资源消耗,降低垃圾填埋成本,减少CO2 ^的排放。经实验和抗压强度验证,PFa存在时形成的主相与坯料的主相大致相同。随着PFa含量的增加,游离石灰含量降低,烧成或熟化温度降低。最佳PFa含量不得超过35wt . %, PFa的任何进一步增加都会对所生产熟料的所有特性产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1