{"title":"Assortment of kaempferol and zinc gluconate improves noise-induced biochemical imbalance and deficits in body weight gain","authors":"I. Akefe, J. Ayo, V. Sinkalu","doi":"10.1017/exp.2021.30","DOIUrl":null,"url":null,"abstract":"Abstract This study investigated the effects of pretreatment with antioxidants, kaempferol, and zinc gluconate on serum biochemical changes and impairment in body weight gain following noise-exposure in Wistar rats. Thirty-five animals were evenly grouped into five cohorts: Groups II, III, IV, and V were exposed to noise stress, induced by exposing rats to 100 dB (4 hr/day) for 15 days, from days 33 to 48 after starting the drug treatments. Treatment with kaempferol and/or zinc mitigated noise-induced deficits in body weight gain, and levels of serum lipid and protein fractions. The combined treatment significantly (p < .05) decreased malondialdehyde concentration in kaempferol + zinc gluconate treated group, compared to the group administered deionized water + noise. This result demonstrates that biochemical dyshomeostasis and lipid peroxidation may be involved in the molecular mechanism underlying noise stress and the assortment of kaempferol and zinc gluconate produced an improved mitigating outcome in Wistar rats.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2021.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract This study investigated the effects of pretreatment with antioxidants, kaempferol, and zinc gluconate on serum biochemical changes and impairment in body weight gain following noise-exposure in Wistar rats. Thirty-five animals were evenly grouped into five cohorts: Groups II, III, IV, and V were exposed to noise stress, induced by exposing rats to 100 dB (4 hr/day) for 15 days, from days 33 to 48 after starting the drug treatments. Treatment with kaempferol and/or zinc mitigated noise-induced deficits in body weight gain, and levels of serum lipid and protein fractions. The combined treatment significantly (p < .05) decreased malondialdehyde concentration in kaempferol + zinc gluconate treated group, compared to the group administered deionized water + noise. This result demonstrates that biochemical dyshomeostasis and lipid peroxidation may be involved in the molecular mechanism underlying noise stress and the assortment of kaempferol and zinc gluconate produced an improved mitigating outcome in Wistar rats.