An Overview of Monitoring Tools for Big Data and Cloud Applications

Gabriel Iuhasz, I. Drăgan
{"title":"An Overview of Monitoring Tools for Big Data and Cloud Applications","authors":"Gabriel Iuhasz, I. Drăgan","doi":"10.1109/SYNASC.2015.62","DOIUrl":null,"url":null,"abstract":"This paper makes a short overview of current state of the art monitoring tools for cloud and big data frameworks. In order to effectively create, test and deploy new algorithms or frameworks one needs suitable monitoring solutions. Hence we aim on creating a critical overview for some of the monitoring solutions existing on the market. Also we present relevant metrics used for monitoring cloud and big data applications, focused mainly on cloud deployment scenarios for big data frameworks.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"305 1","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper makes a short overview of current state of the art monitoring tools for cloud and big data frameworks. In order to effectively create, test and deploy new algorithms or frameworks one needs suitable monitoring solutions. Hence we aim on creating a critical overview for some of the monitoring solutions existing on the market. Also we present relevant metrics used for monitoring cloud and big data applications, focused mainly on cloud deployment scenarios for big data frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据和云应用监控工具概述
本文简要概述了当前用于云和大数据框架的最先进的监控工具的状态。为了有效地创建、测试和部署新的算法或框架,需要合适的监控解决方案。因此,我们的目标是为市场上现有的一些监控解决方案创建一个关键的概述。此外,我们还介绍了用于监控云和大数据应用程序的相关指标,主要关注大数据框架的云部署场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Reasoning on Strongly Distributed Multi-agent Systems Extensions over OpenCL for Latency Reduction and Critical Applications An Improved Upper-Bound Algorithm for Non-preemptive Task Scheduling Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments Improving Malware Detection Response Time with Behavior-Based Statistical Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1