Neural Network Meta-Models for FPSO Motion Prediction From Environmental Data

L. P. Cotrim, H. B. Oliveira, Asdrubal N. Queiroz Filho, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, A. H. R. Costa, E. Gomi
{"title":"Neural Network Meta-Models for FPSO Motion Prediction From Environmental Data","authors":"L. P. Cotrim, H. B. Oliveira, Asdrubal N. Queiroz Filho, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, A. H. R. Costa, E. Gomi","doi":"10.1115/omae2021-62674","DOIUrl":null,"url":null,"abstract":"\n The current design process of mooring systems for FPSOs is highly dependent on the availability of the platform’s mathematical model and accuracy of dynamic simulations, through which resulting time series motion is evaluated according to design constraints. This process can be time-consuming and present inaccurate results due to the mathematical model’s limitations and overall complexity of the vessel’s dynamics. We propose a Neural Simulator, a set of data-based surrogate models with environmental data as input, each specialized in the prediction of different motion statistics relevant to mooring system design: Maximum Roll, Platform Offset and Fairlead Displacements. The meta-models are trained by real current, wind and wave data measured in 3h periods at the Campos Basin (Brazil) from 2003 to 2010 and the associated dynamic response of a spread-moored FPSO obtained through time-domain simulations using the Dynasim software. A comparative analysis of different model architectures is conducted and the proposed models are shown to correctly capture platform dynamics, providing good results when compared to the statistical analysis of time series motion obtained from Dynasim.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current design process of mooring systems for FPSOs is highly dependent on the availability of the platform’s mathematical model and accuracy of dynamic simulations, through which resulting time series motion is evaluated according to design constraints. This process can be time-consuming and present inaccurate results due to the mathematical model’s limitations and overall complexity of the vessel’s dynamics. We propose a Neural Simulator, a set of data-based surrogate models with environmental data as input, each specialized in the prediction of different motion statistics relevant to mooring system design: Maximum Roll, Platform Offset and Fairlead Displacements. The meta-models are trained by real current, wind and wave data measured in 3h periods at the Campos Basin (Brazil) from 2003 to 2010 and the associated dynamic response of a spread-moored FPSO obtained through time-domain simulations using the Dynasim software. A comparative analysis of different model architectures is conducted and the proposed models are shown to correctly capture platform dynamics, providing good results when compared to the statistical analysis of time series motion obtained from Dynasim.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环境数据的FPSO运动预测神经网络元模型
目前fpso系泊系统的设计过程高度依赖于平台数学模型的可用性和动态仿真的准确性,通过这些模型,可以根据设计约束评估产生的时间序列运动。由于数学模型的局限性和船舶动力学的整体复杂性,这个过程可能会很耗时,而且结果也不准确。我们提出了一个神经模拟器,这是一组以环境数据为输入的基于数据的代理模型,每个模型都专门用于预测与系泊系统设计相关的不同运动统计数据:最大横摇、平台偏移和Fairlead位移。这些元模型是根据2003年至2010年在巴西Campos盆地每3小时测量的真实电流、风和波浪数据,以及通过使用Dynasim软件进行时域模拟获得的扩展系泊FPSO的相关动态响应进行训练的。对不同的模型架构进行了比较分析,结果表明所提出的模型能够正确地捕获平台动态,与从Dynasim获得的时间序列运动的统计分析相比,提供了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1