Reduction of filler-filler interaction and hysteresis loss of carbon black filled rubber compound by using modified carbon Black

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Progress in Rubber Plastics and Recycling Technology Pub Date : 2022-12-16 DOI:10.1177/14777606221145699
Nitya Narayan Kunti, R. Sengupta
{"title":"Reduction of filler-filler interaction and hysteresis loss of carbon black filled rubber compound by using modified carbon Black","authors":"Nitya Narayan Kunti, R. Sengupta","doi":"10.1177/14777606221145699","DOIUrl":null,"url":null,"abstract":"The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"22 1","pages":"156 - 168"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606221145699","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改性炭黑对降低炭黑填充胶料填料间相互作用及滞回损失的影响
炭黑作为补强填料用于胶料中,可以提高胶料的强度、耐久性和耐磨性。然而,它会引起填料与填料之间的相互作用,并导致变形时广泛的迟滞能量损失。本研究旨在通过减少填料与填料之间的相互作用和改善填料在橡胶基体中的分散来降低橡胶复合材料的滞回能量损失。研究了经三乙基氯化苄铵(BTEAC)处理后的炭黑对溶液丁苯橡胶和丁二烯橡胶(SSBR-BR)体系的影响。对炭黑在橡胶基体中的分散和分布进行了微观研究,观察到BTEAC处理后的炭黑在SSBR-BR橡胶基体中的分散有显著改善。由于BTEAC处理过的炭黑与橡胶的相互作用增加,填料与填料之间的相互作用显著减少,从而降低了化合物的滞后能量损失(用损失正切(tanδ)值表示),并且观察到在由BTEAC处理过的炭黑组成的橡胶化合物中,tanδ值降低了约15%。在本研究中,用不同浓度的BTEAC(0.5%、1%和1.5%)处理炭黑,观察到1%和1.5% BTEAC处理后的炭黑橡胶性能的最佳平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Rubber Plastics and Recycling Technology
Progress in Rubber Plastics and Recycling Technology MATERIALS SCIENCE, COMPOSITES-POLYMER SCIENCE
CiteScore
4.40
自引率
7.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.
期刊最新文献
Characterization and application of composite resin of natural rubber latex and polystyrene waste as a binder for water-resistant emulsion paint formulation Lignin dispersion in polybutadiene rubber (BR) with different mixing parameters Comparative study: High performance polymers of polyphenylene sulfide and polyethylenimine using Taguchi-Topsis optimization approaches Contribution of geometrical infill pattern on mechanical behaviour of 3D manufactured polylactic acid specimen: Experimental and numerical analysis Non-linear mechanical behaviour of thermoplastic elastomeric materials and its vulcanizate under tension/tension fatigue deformation by fourier transform rheological studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1