Research on Shallow Groundwater Enrichment Assessment Based on RS and GIS Arid and Semi-Arid Areas

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.23977/geors.2022.050106
Chuanyue Yang
{"title":"Research on Shallow Groundwater Enrichment Assessment Based on RS and GIS Arid and Semi-Arid Areas","authors":"Chuanyue Yang","doi":"10.23977/geors.2022.050106","DOIUrl":null,"url":null,"abstract":": The area of arid and semi-arid areas in the world is increasing; in order to solve the issues related to the shallow groundwater enrichment assessment of the arid semi-arid areas, take the typical arid and semi-arid area as the research area of Wuwei Citizen Qin County, Gansu, through remote sensing, GF-6, CBERS04 and DEM are used as data sources to use layer analysis to build an evaluation model for hierarchical enrichment results. It has obtained the laws of shallow groundwater distribution in the research zone in the past five years and the next five years. The trend of water level distribution in the past five years is generally consistent, showing from the southwest to the northeast gradually decreases, there are multiple groundwater funnels, and the shallow groundwater content will remain stable and will increase slightly in the next five years. The results of this study evaluate the development trend of shallow groundwater in Wuwei citizens in Gansu; it provides a scientific basis for future shallow groundwater management.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"29 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23977/geors.2022.050106","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

: The area of arid and semi-arid areas in the world is increasing; in order to solve the issues related to the shallow groundwater enrichment assessment of the arid semi-arid areas, take the typical arid and semi-arid area as the research area of Wuwei Citizen Qin County, Gansu, through remote sensing, GF-6, CBERS04 and DEM are used as data sources to use layer analysis to build an evaluation model for hierarchical enrichment results. It has obtained the laws of shallow groundwater distribution in the research zone in the past five years and the next five years. The trend of water level distribution in the past five years is generally consistent, showing from the southwest to the northeast gradually decreases, there are multiple groundwater funnels, and the shallow groundwater content will remain stable and will increase slightly in the next five years. The results of this study evaluate the development trend of shallow groundwater in Wuwei citizens in Gansu; it provides a scientific basis for future shallow groundwater management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RS和GIS的干旱半干旱区浅层地下水富集评价研究
世界上干旱和半干旱地区的面积正在增加;为解决干旱半干旱区浅层地下水富集评价的相关问题,以甘肃武威西民秦县典型干旱半干旱区为研究区,通过遥感,以GF-6、CBERS04和DEM为数据源,采用分层分析法,构建分层富集结果评价模型。获得了研究区近5年及未来5年浅层地下水分布规律。近5年水位分布趋势基本一致,由西南向东北逐渐降低,存在多个地下水通道,未来5年浅层地下水含量将保持稳定并略有增加。研究结果评价了甘肃武威市浅层地下水的发展趋势;为今后浅层地下水管理提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1