Modeling and Design of Hinged Tile-Based Curling Air Surface for Morphing Windshield Cowling

Tiantian Li, J. Luntz, D. Brei, P. Alexander, Wonhee Kim
{"title":"Modeling and Design of Hinged Tile-Based Curling Air Surface for Morphing Windshield Cowling","authors":"Tiantian Li, J. Luntz, D. Brei, P. Alexander, Wonhee Kim","doi":"10.1115/1.4062220","DOIUrl":null,"url":null,"abstract":"\n The gap between the windshield and hood allows windshield wipers to operate, but causes problems gathering leaves and snow. Active morphing approaches provide an opportunity to create a windshield cowling that addresses this issue by covering the gap normally and actively curling out of the way to allow wiper operation. Most existing morphing techniques lack simultaneous large force/stroke generation, cannot perform two-way actuation, or fail to rigidly hold their position against varying loads such as wind. This article studies a novel curling air surface based on hinged T-shaped tiles that improve upon existing technologies by adding straightening actuation to out-of-plane curling with large force and deflection, while also holding position rigidly. Through vacuuming an upper curling bladder enclosing the tiles and inflating lower straightening bladders spanning the hinge lines, the air surface uncovers and covers the gap against wind loads and holds its curled position rigidly using inter-tile hard stops. An analytical surface model aggregated from multiple instances of a first principle unit curling model predicts the air surface performance. This model includes additional kinematic effects, extending the range of applicability, and additional bladder effect phenomenological terms to improve accuracy. The model is validated across scales and enables design space visualization, which is applied to design a windshield cowling. The resulting design is validated and demonstrated in a full-scale prototype. This article provides the technology concept, supporting model, and design approach to broadly apply this useful air surface to other morphing applications.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gap between the windshield and hood allows windshield wipers to operate, but causes problems gathering leaves and snow. Active morphing approaches provide an opportunity to create a windshield cowling that addresses this issue by covering the gap normally and actively curling out of the way to allow wiper operation. Most existing morphing techniques lack simultaneous large force/stroke generation, cannot perform two-way actuation, or fail to rigidly hold their position against varying loads such as wind. This article studies a novel curling air surface based on hinged T-shaped tiles that improve upon existing technologies by adding straightening actuation to out-of-plane curling with large force and deflection, while also holding position rigidly. Through vacuuming an upper curling bladder enclosing the tiles and inflating lower straightening bladders spanning the hinge lines, the air surface uncovers and covers the gap against wind loads and holds its curled position rigidly using inter-tile hard stops. An analytical surface model aggregated from multiple instances of a first principle unit curling model predicts the air surface performance. This model includes additional kinematic effects, extending the range of applicability, and additional bladder effect phenomenological terms to improve accuracy. The model is validated across scales and enables design space visualization, which is applied to design a windshield cowling. The resulting design is validated and demonstrated in a full-scale prototype. This article provides the technology concept, supporting model, and design approach to broadly apply this useful air surface to other morphing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变形挡风玻璃整流罩铰链式瓦片卷曲气面建模与设计
挡风玻璃和引擎盖之间的间隙允许雨刷器工作,但会导致收集树叶和雪的问题。主动变形方法提供了创造挡风玻璃整流罩的机会,通过正常覆盖间隙并主动卷曲以允许雨刷器操作来解决这个问题。大多数现有的变形技术缺乏同时产生大的力/冲程,不能执行双向驱动,或者不能在风等不同负载下牢固地保持位置。本文研究了一种新型的基于铰接t形瓦片的卷曲气面,在现有技术的基础上,在面外卷曲的基础上增加了大力大挠度的矫直驱动,同时还能刚性地保持位置。通过抽真空封闭瓦片的上部卷曲膀胱和跨越铰链线的下部伸直膀胱,空气表面打开并覆盖空隙以抵抗风荷载,并使用瓦片间硬止点刚性地保持其卷曲位置。一个由多个第一原理单元卷曲模型实例聚合而成的分析表面模型预测了空气表面的性能。该模型包括额外的运动学效应,扩展了适用范围,以及额外的膀胱效应现象学术语,以提高准确性。该模型跨尺度验证,使设计空间可视化,并应用于挡风玻璃整流罩的设计。最终的设计在一个全尺寸的原型中得到验证和演示。本文提供了将这种有用的空气表面广泛应用于其他变形应用的技术概念、支持模型和设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1