Two-Dimensional Full Core Analysis of IFBA-Coated TRISO Fuel Particles in Very High Temperature Reactors

M. Alrwashdeh, S. Alameri
{"title":"Two-Dimensional Full Core Analysis of IFBA-Coated TRISO Fuel Particles in Very High Temperature Reactors","authors":"M. Alrwashdeh, S. Alameri","doi":"10.1115/icone2020-16838","DOIUrl":null,"url":null,"abstract":"\n The Prismatic-core Advanced High Temperature Reactor (PAHTR) is a very high temperature reactor type which is one of promising reactor type technologies classified as Generation IV by the International Forum. The new technology designs are identified as being proliferation resistant, safe, economical, efficient, and long fuel cycle. In this paper, the continuous-energy Monte Carlo method is capable of capturing all of the necessary reactor physics parameters using high fidelity two dimensional model with Serpent Monte Carlo code, and applied for a large scale reactor core loaded with TRi-structural ISOtropic (TRISO) particle by taking into account the double heterogeneity effect. These analyses were performed for PAHTR reactor core that utilizes TRISO particles fuel embedded in graphite matrix by applying a new innovative idea of adding Integral Fuel Burnable Absorber (IFBA) as an additional coating layer with a designated thickness. Adding IFBA coating could lead to compressed excess reactivity at the Beginning of Cycle (BOC), and extended burnup cycle. The additional IFBA coating layer is placed in the outer surface of the fuel kernel and covered by the buffer layers that compose the TRISO fuel particle. Neutronic calculations were performed for both TRISO particle unit cell and for full core with homogenous distribution of IFBA coating.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Prismatic-core Advanced High Temperature Reactor (PAHTR) is a very high temperature reactor type which is one of promising reactor type technologies classified as Generation IV by the International Forum. The new technology designs are identified as being proliferation resistant, safe, economical, efficient, and long fuel cycle. In this paper, the continuous-energy Monte Carlo method is capable of capturing all of the necessary reactor physics parameters using high fidelity two dimensional model with Serpent Monte Carlo code, and applied for a large scale reactor core loaded with TRi-structural ISOtropic (TRISO) particle by taking into account the double heterogeneity effect. These analyses were performed for PAHTR reactor core that utilizes TRISO particles fuel embedded in graphite matrix by applying a new innovative idea of adding Integral Fuel Burnable Absorber (IFBA) as an additional coating layer with a designated thickness. Adding IFBA coating could lead to compressed excess reactivity at the Beginning of Cycle (BOC), and extended burnup cycle. The additional IFBA coating layer is placed in the outer surface of the fuel kernel and covered by the buffer layers that compose the TRISO fuel particle. Neutronic calculations were performed for both TRISO particle unit cell and for full core with homogenous distribution of IFBA coating.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温反应堆中ifba包覆TRISO燃料颗粒的二维全堆芯分析
棱镜堆芯先进高温堆(PAHTR)是一种极高温堆型技术,被国际论坛列为第四代最有前途的堆型技术之一。新技术设计具有防扩散、安全、经济、高效、长燃料循环等特点。本文采用连续能量蒙特卡罗方法,利用Serpent蒙特卡罗代码,利用高保真二维模型捕获所有必要的反应堆物理参数,并将其应用于考虑双重非均质效应的装载三结构各向同性(TRISO)粒子的大型反应堆堆芯。这些分析是针对PAHTR反应堆堆芯进行的,该堆芯采用了一种新的创新理念,即在石墨基体中嵌入TRISO颗粒燃料,添加整体可燃吸收剂(IFBA)作为指定厚度的附加涂层。添加IFBA涂层可以压缩循环开始时的过量反应性,并延长燃耗周期。额外的IFBA涂层层位于燃料核的外表面,并被组成TRISO燃料颗粒的缓冲层覆盖。对三iso粒子单元电池和IFBA涂层均匀分布的全芯进行了中子计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Thermal Efficiency Optimization of a Modular High Temperature Gas-Cooled Reactor Plant by Extraction Steam Distribution Study on the Effect of Different Factors of Displacement Cascades in Alpha-Fe by Molecular Dynamics Simulations Sensitivity Analysis of External Exposure Dose for Future Burial Measures of Decontamination Soil Generated Outside Fukushima Prefecture Investigating Structural Response of Pressure Reducing Valve of Supercritical Steam Generator System Under Cyclic Moments, Thermal Transient, and Pressure Loadings Fatigue Risk Evaluation of a Pressure Vessel Plug Subject to Flow Induced Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1