Thermal Efficiency Optimization of a Modular High Temperature Gas-Cooled Reactor Plant by Extraction Steam Distribution

Di Jiang, Z. Dong
{"title":"Thermal Efficiency Optimization of a Modular High Temperature Gas-Cooled Reactor Plant by Extraction Steam Distribution","authors":"Di Jiang, Z. Dong","doi":"10.1115/icone2020-16413","DOIUrl":null,"url":null,"abstract":"\n Modular high temperature gas-cooled reactor (MHTGR) is a small modular reactor (SMR) with inherent safety, which is suitable for load following to improve economic competitiveness. The heat regenerative system for MHTGR nuclear power plant, is crucial for the improvement of thermal efficiency. Traditionally, the enthalpy drop distribution method (EDM) is used to study the relationships between thermal efficiency and distribution of extraction steam. However, this strategy is mainly used for off-line design of steam turbine under rated conditions. For load following operation, it is hard to guarantee the extraction steam distribution of EDM due to the highly nonlinear “flowrate-pressure-temperature” coupling of the fluid network. Thus, in this paper, the thermal efficiency is derived analytically based on the steady state model of fluid network. Then the thermal efficiency optimization is cast into a nonlinear programming problem, in which physical constraints can be considered explicitly. The proposed method for extraction steam distribution is of significance for improving the thermal efficiency of normal operation of nuclear power plant.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modular high temperature gas-cooled reactor (MHTGR) is a small modular reactor (SMR) with inherent safety, which is suitable for load following to improve economic competitiveness. The heat regenerative system for MHTGR nuclear power plant, is crucial for the improvement of thermal efficiency. Traditionally, the enthalpy drop distribution method (EDM) is used to study the relationships between thermal efficiency and distribution of extraction steam. However, this strategy is mainly used for off-line design of steam turbine under rated conditions. For load following operation, it is hard to guarantee the extraction steam distribution of EDM due to the highly nonlinear “flowrate-pressure-temperature” coupling of the fluid network. Thus, in this paper, the thermal efficiency is derived analytically based on the steady state model of fluid network. Then the thermal efficiency optimization is cast into a nonlinear programming problem, in which physical constraints can be considered explicitly. The proposed method for extraction steam distribution is of significance for improving the thermal efficiency of normal operation of nuclear power plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用抽汽分配优化模块化高温气冷堆装置热效率
模块化高温气冷堆(MHTGR)是一种具有固有安全性的小型模块化堆(SMR),适用于负荷跟随,提高经济竞争力。蓄热系统是MHTGR核电站提高热效率的关键。传统上采用焓降分布法(EDM)研究抽汽热效率与抽汽分布的关系。然而,这种策略主要用于汽轮机在额定工况下的脱机设计。在负荷跟随运行时,由于流体网络高度非线性的“流量-压力-温度”耦合,难以保证电火花加工抽汽分配。因此,本文基于流体网络稳态模型,解析导出了热效率。然后将热效率优化问题转化为一个可以明确考虑物理约束的非线性规划问题。提出的抽汽分配方法对提高核电站正常运行的热效率具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Thermal Efficiency Optimization of a Modular High Temperature Gas-Cooled Reactor Plant by Extraction Steam Distribution Study on the Effect of Different Factors of Displacement Cascades in Alpha-Fe by Molecular Dynamics Simulations Sensitivity Analysis of External Exposure Dose for Future Burial Measures of Decontamination Soil Generated Outside Fukushima Prefecture Investigating Structural Response of Pressure Reducing Valve of Supercritical Steam Generator System Under Cyclic Moments, Thermal Transient, and Pressure Loadings Fatigue Risk Evaluation of a Pressure Vessel Plug Subject to Flow Induced Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1