The airflow distribution and aerosol diffusion rules in the negative pressure isolation ward

IF 1.3 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Simulation-Transactions of the Society for Modeling and Simulation International Pub Date : 2023-04-26 DOI:10.1177/00375497231168628
Shanbi Peng, Xue Luo, Bin Yu, Li Huang, Enbin Liu
{"title":"The airflow distribution and aerosol diffusion rules in the negative pressure isolation ward","authors":"Shanbi Peng, Xue Luo, Bin Yu, Li Huang, Enbin Liu","doi":"10.1177/00375497231168628","DOIUrl":null,"url":null,"abstract":"Negative pressure wards are significant in preventing the spread of infectious pathogens which play a crucial role in fighting against COVID-19. Owing to the negative pressure, contaminated air with pathogens is not able to flow from the wards to non-contaminated zones while fresh filtered air will be transported to the ward via the ventilation system. As airflow controlled by ventilation systems affects the motion of pathogens, for example, infectious aerosol particles, the ability of a negative pressure ward to reduce the risk of infection highly relies on an effective ventilation system. In this investigation, impacts of airflow patterns under various human postures and ventilation processes aerosols diffusion are analyzed via the computational fluid dynamics (CFD) simulation. According to the results, among three airflow patterns, the highest contaminant removal efficiency is 57% at 200 s with the top supply and bottom return mode; besides, in three postures, in the case that the patient is in a standing position, the contaminant removal efficiency is the highest. Furthermore, it is found that the best airflow scheme is a slit tuyere in the ward, with a top supply and side return mode and a sitting position for the patient. This study may provide a reference for the design of airflow in negative pressure isolation wards, control of contaminants, and prevention of viral infections, so as to ensure a good working and recovery environment for medical staff and patients.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"16 1","pages":"917 - 936"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231168628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Negative pressure wards are significant in preventing the spread of infectious pathogens which play a crucial role in fighting against COVID-19. Owing to the negative pressure, contaminated air with pathogens is not able to flow from the wards to non-contaminated zones while fresh filtered air will be transported to the ward via the ventilation system. As airflow controlled by ventilation systems affects the motion of pathogens, for example, infectious aerosol particles, the ability of a negative pressure ward to reduce the risk of infection highly relies on an effective ventilation system. In this investigation, impacts of airflow patterns under various human postures and ventilation processes aerosols diffusion are analyzed via the computational fluid dynamics (CFD) simulation. According to the results, among three airflow patterns, the highest contaminant removal efficiency is 57% at 200 s with the top supply and bottom return mode; besides, in three postures, in the case that the patient is in a standing position, the contaminant removal efficiency is the highest. Furthermore, it is found that the best airflow scheme is a slit tuyere in the ward, with a top supply and side return mode and a sitting position for the patient. This study may provide a reference for the design of airflow in negative pressure isolation wards, control of contaminants, and prevention of viral infections, so as to ensure a good working and recovery environment for medical staff and patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负压隔离病房内气流分布及气溶胶扩散规律
负压病房在预防传染性病原体传播方面具有重要意义,在抗击新冠肺炎疫情中发挥着至关重要的作用。由于负压,带有病原体的污染空气不能从病房流向非污染区,而经过过滤的新鲜空气将通过通风系统输送到病房。由于通风系统控制的气流会影响病原体(例如传染性气溶胶颗粒)的运动,因此负压病房降低感染风险的能力高度依赖于有效的通风系统。本研究通过计算流体动力学(CFD)模拟,分析了不同人体姿势和通风过程下气流模式对气溶胶扩散的影响。结果表明,三种气流方式中,上送风下回风在200 s时的污染物去除效率最高,达到57%;此外,在三种体位中,当患者处于站立姿势时,污染物去除效率最高。此外,发现最佳的气流方案是病房内的狭缝风口,采用顶进侧回模式,患者采用坐姿。本研究可为负压隔离病房的气流设计、污染物控制、病毒感染预防提供参考,为医护人员和患者提供良好的工作和康复环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
31.20%
发文量
60
审稿时长
3 months
期刊介绍: SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.
期刊最新文献
V2X-assisted emergency vehicle transit in VANETs Validity Frame–enabled model-based engineering processes Development of an agent-based model incorporating Function–Behavior–Structure framework to enable systems engineering design process evaluation Mitigating the negative impact of new buildings on existing buildings' user comfort-a case study analysis. Dynamical simulation of the Syrian refugee crisis: quantifying the driving factors of forced migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1