Ensembling Scale Invariant and Multiresolution Gabor Scores for Palm Vein Identification

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2022-12-12 DOI:10.5755/j01.itc.51.4.30858
G. Ananthi, J. Sekar, S. Arivazhagan
{"title":"Ensembling Scale Invariant and Multiresolution Gabor Scores for Palm Vein Identification","authors":"G. Ananthi, J. Sekar, S. Arivazhagan","doi":"10.5755/j01.itc.51.4.30858","DOIUrl":null,"url":null,"abstract":"Biometric recognition based on palm vein trait has the advantages of liveness detection and high level of security. An improved human palm vein identification system based on ensembling the scores computed from scale invariant features and multiresolution adaptive Gabor features is proposed. In the training phase, from the input palm vein images, the interested palm regions are segmented using 3-valley point maximal palm extraction strategy, an improved method that extracts the maximal region of interest (ROI) easily and properly. Extracted ROI is enhanced using contrast limited adaptive histogram equalization method. From the enhanced image, local invariant features are extracted by applying scale invariant feature transform (SIFT). The texture and multiresolution features are extracted by employing adaptive Gabor filter over the enhanced image. These two features, scale invariant and multiresolution Gabor features act as the templates. In the testing phase, for the test images, ROI extraction, image enhancement, and two different feature extractions are performed. Using cosine similarity and match count-based classification, the score, Ss is computed for the SIFT features. Another score, Sg is computed using the normalized Hamming distance measure for the Gabor features. Both these scores are ensembled using the weighted sum rule to produce the final score, SF for identifying the person.  Experiments conducted with CASIA multispectral palmprint image database version 1.0 and VERA palm vein database show that, the proposed method achieves equal error rate of 0.026% and 0.0205% respectively. For these databases, recognition rate of 99.73% and 99.89% respectively are obtained which is superior to the state-of-the-art methods in authentication and identification. The proposed work is suitable for applications wherein the authenticated person should not be considered as imposter.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"92 1","pages":"704-722"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.51.4.30858","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Biometric recognition based on palm vein trait has the advantages of liveness detection and high level of security. An improved human palm vein identification system based on ensembling the scores computed from scale invariant features and multiresolution adaptive Gabor features is proposed. In the training phase, from the input palm vein images, the interested palm regions are segmented using 3-valley point maximal palm extraction strategy, an improved method that extracts the maximal region of interest (ROI) easily and properly. Extracted ROI is enhanced using contrast limited adaptive histogram equalization method. From the enhanced image, local invariant features are extracted by applying scale invariant feature transform (SIFT). The texture and multiresolution features are extracted by employing adaptive Gabor filter over the enhanced image. These two features, scale invariant and multiresolution Gabor features act as the templates. In the testing phase, for the test images, ROI extraction, image enhancement, and two different feature extractions are performed. Using cosine similarity and match count-based classification, the score, Ss is computed for the SIFT features. Another score, Sg is computed using the normalized Hamming distance measure for the Gabor features. Both these scores are ensembled using the weighted sum rule to produce the final score, SF for identifying the person.  Experiments conducted with CASIA multispectral palmprint image database version 1.0 and VERA palm vein database show that, the proposed method achieves equal error rate of 0.026% and 0.0205% respectively. For these databases, recognition rate of 99.73% and 99.89% respectively are obtained which is superior to the state-of-the-art methods in authentication and identification. The proposed work is suitable for applications wherein the authenticated person should not be considered as imposter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于手掌静脉识别的集成尺度不变和多分辨率Gabor评分
基于手掌静脉特征的生物特征识别具有活体检测和高安全性的优点。提出了一种基于尺度不变特征和多分辨率自适应Gabor特征积分集成的改进手掌静脉识别系统。在训练阶段,从输入的手掌静脉图像中,使用3谷点最大手掌提取策略分割感兴趣的手掌区域,这种改进的方法可以方便、准确地提取最大感兴趣区域(ROI)。利用对比度有限的自适应直方图均衡化方法增强提取的ROI。在增强图像中,通过尺度不变特征变换(SIFT)提取局部不变特征。利用自适应Gabor滤波对增强后的图像进行纹理和多分辨率特征提取。尺度不变特征和多分辨率Gabor特征作为模板。在测试阶段,对测试图像进行ROI提取、图像增强和两种不同的特征提取。使用余弦相似度和基于匹配计数的分类,计算SIFT特征的分数Ss。另一个分数Sg是使用Gabor特征的归一化汉明距离度量来计算的。使用加权和规则将这两个分数组合起来产生最终分数SF,用于识别该人。在CASIA多光谱掌纹图像数据库1.0版本和VERA掌纹数据库中进行的实验表明,该方法的错误率分别为0.026%和0.0205%。对这些数据库的识别率分别为99.73%和99.89%,优于现有的认证和识别方法。建议的工作适用于经认证的人士不应被视为冒名顶替者的申请。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1