An Experimental Study of Algorithms for Packing Arborescences

L. Georgiadis, Dionysios Kefallinos, Anna Mpanti, Stavros D. Nikolopoulos
{"title":"An Experimental Study of Algorithms for Packing Arborescences","authors":"L. Georgiadis, Dionysios Kefallinos, Anna Mpanti, Stavros D. Nikolopoulos","doi":"10.4230/LIPIcs.SEA.2022.14","DOIUrl":null,"url":null,"abstract":"A classic result of Edmonds states that the maximum number of edge-disjoint arborescences of a directed graph G , rooted at a designated vertex s , equals the minimum cardinality c G ( s ) of an s -cut of G . This concept is related to the edge connectivity λ ( G ) of a strongly connected directed graph G , defined as the minimum number of edges whose deletion leaves a graph that is not strongly connected. In this paper, we address the question of how efficiently we can compute a maximum packing of edge-disjoint arborescences in practice, compared to the time required to determine the edge connectivity of a graph. To that end, we explore the design space of efficient algorithms for packing arborescences of a directed graph in practice and conduct a thorough empirical study to highlight the merits and weaknesses of each technique. In particular, we present an efficient implementation of Gabow’s arborescence packing algorithm and provide a simple but efficient heuristic that significantly improves its running time in practice. Project FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431. H = G − A , and a complete ( k − 1)-intersection T for s on G . It uses the following key concept. An enlarging path consists of an edge e ∈ E + ( A ), and if e ∈ T , an augmenting path P for the ( k − 1)-intersection T − e on H − e . Gabow shows that if V ( A ) ̸ = V ( G ), then there is always an enlarging path.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"1 1","pages":"14:1-14:16"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A classic result of Edmonds states that the maximum number of edge-disjoint arborescences of a directed graph G , rooted at a designated vertex s , equals the minimum cardinality c G ( s ) of an s -cut of G . This concept is related to the edge connectivity λ ( G ) of a strongly connected directed graph G , defined as the minimum number of edges whose deletion leaves a graph that is not strongly connected. In this paper, we address the question of how efficiently we can compute a maximum packing of edge-disjoint arborescences in practice, compared to the time required to determine the edge connectivity of a graph. To that end, we explore the design space of efficient algorithms for packing arborescences of a directed graph in practice and conduct a thorough empirical study to highlight the merits and weaknesses of each technique. In particular, we present an efficient implementation of Gabow’s arborescence packing algorithm and provide a simple but efficient heuristic that significantly improves its running time in practice. Project FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431. H = G − A , and a complete ( k − 1)-intersection T for s on G . It uses the following key concept. An enlarging path consists of an edge e ∈ E + ( A ), and if e ∈ T , an augmenting path P for the ( k − 1)-intersection T − e on H − e . Gabow shows that if V ( A ) ̸ = V ( G ), then there is always an enlarging path.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树形排列填充算法的实验研究
Edmonds的一个经典结果表明,根于指定顶点s的有向图G的最大边不相交树形数等于G的s -cut的最小基数c G (s)。这个概念与强连接有向图G的边连通性λ (G)有关,定义为其删除后留下非强连接图的最小边数。在本文中,我们解决的问题是,与确定图的边缘连通性所需的时间相比,我们在实践中如何有效地计算边缘不相交树的最大包装。为此,我们在实践中探索了有向图树杈填充的有效算法的设计空间,并进行了彻底的实证研究,以突出每种技术的优点和缺点。特别地,我们提出了Gabow树形打包算法的有效实现,并提供了一个简单而有效的启发式算法,在实践中显著提高了其运行时间。网络分析的高效算法(FANTA)项目,编号hri - fm17 -431。H = G−A,以及s在G上的完全(k−1)交T。它使用以下关键概念。扩展路径由一条边e∈e + (A)组成,如果e∈T,则在H−e上的(k−1)交T−e的扩展路径P。Gabow表明,如果V (A) h = V (G),则总存在一条扩大路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Yao Graph Construction Partitioning the Bags of a Tree Decomposition Into Cliques Arc-Flags Meet Trip-Based Public Transit Routing Maximum Coverage in Sublinear Space, Faster FREIGHT: Fast Streaming Hypergraph Partitioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1