{"title":"Phase equilibria of Bi-Te-RE (Yb,Nd,Sm,Er,Tb) ternary systems at 673K","authors":"L.-G. Zhang, Q. Song, M. Tan, Y. Jiang, L.-B. Liu","doi":"10.2298/jmmb211118007z","DOIUrl":null,"url":null,"abstract":"The phase equilibria of Bi-Te-RE (Yb, Nd, Sm, Er, Tb) at 673K were established through equilibrated alloys, the isothermal sections of Bi-Te-RE (Yb, Nd, Sm, Er, Tb) at 673K were established according to the result of Scanning Electron Microscopy (SEM), Electron probe micro-analysis (EPMA) and Powder X-ray diffractometry (XRD). In the Bi-Te-Yb system at 673 K, the existence of 4 three-phase equilibria (YbTe+Bi2Te3+Te, YbTe+Bi2Te3+?, YbTe+Bi+?, YbTe+Yb5Bi3+Yb4Bi3) has been established, while 3 three-phase regions (NdTe2+?+Bi2Te3, NdTe2+?+Bi, Nd2Te3+Bi+BiTeNd) in Bi-Te-Nd system, 3 three-phase regions (SmTe3+Te+Bi2Te3, SmTe1.8+ Bi2Te3+?, SmTe1.8+?+Bi) in Bi-Te-Nd system, 3 three-phase regions (TbTe3+Te+Bi2Te3, Tb4Te7+Bi2Te3+?, TbTe+Bi+?) in Bi-Te-Nd system, and 4 three-phase regions (ErTe3+Te+Bi2Te3, ErTe3+Bi2Te3+Er2Te3, Bi2Te3+Er2Te3+?, Er2Te3+?+ErTe, ?+ErTe+Bi) in Bi-Te-Nd system have also been identified respectively. Among the Bi-Te-RE (Nd, Sm, Er, Tb, Yb) systems, the solubilities of RE in Bi2Te3 are 0.19 at % Nd, 0.22 at % Sm, 0.28 at % Tb, 0.35 at %Er, and 0.37 at % Yb. In general, the maximum solubility of elements in Bi2Te3 phase alloy become more and more larger with the increase in RE atomic number. A ternary compound BiTeNd in the Bi-Te-Nd ternary system was confirmed in this work.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"336 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb211118007z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
The phase equilibria of Bi-Te-RE (Yb, Nd, Sm, Er, Tb) at 673K were established through equilibrated alloys, the isothermal sections of Bi-Te-RE (Yb, Nd, Sm, Er, Tb) at 673K were established according to the result of Scanning Electron Microscopy (SEM), Electron probe micro-analysis (EPMA) and Powder X-ray diffractometry (XRD). In the Bi-Te-Yb system at 673 K, the existence of 4 three-phase equilibria (YbTe+Bi2Te3+Te, YbTe+Bi2Te3+?, YbTe+Bi+?, YbTe+Yb5Bi3+Yb4Bi3) has been established, while 3 three-phase regions (NdTe2+?+Bi2Te3, NdTe2+?+Bi, Nd2Te3+Bi+BiTeNd) in Bi-Te-Nd system, 3 three-phase regions (SmTe3+Te+Bi2Te3, SmTe1.8+ Bi2Te3+?, SmTe1.8+?+Bi) in Bi-Te-Nd system, 3 three-phase regions (TbTe3+Te+Bi2Te3, Tb4Te7+Bi2Te3+?, TbTe+Bi+?) in Bi-Te-Nd system, and 4 three-phase regions (ErTe3+Te+Bi2Te3, ErTe3+Bi2Te3+Er2Te3, Bi2Te3+Er2Te3+?, Er2Te3+?+ErTe, ?+ErTe+Bi) in Bi-Te-Nd system have also been identified respectively. Among the Bi-Te-RE (Nd, Sm, Er, Tb, Yb) systems, the solubilities of RE in Bi2Te3 are 0.19 at % Nd, 0.22 at % Sm, 0.28 at % Tb, 0.35 at %Er, and 0.37 at % Yb. In general, the maximum solubility of elements in Bi2Te3 phase alloy become more and more larger with the increase in RE atomic number. A ternary compound BiTeNd in the Bi-Te-Nd ternary system was confirmed in this work.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.