Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy

N. Hosseini, O. Peric, Matthias Neuenschwander, Santiago H. Andany, J. Adams, G. Fantner
{"title":"Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy","authors":"N. Hosseini, O. Peric, Matthias Neuenschwander, Santiago H. Andany, J. Adams, G. Fantner","doi":"10.1109/TRANSDUCERS.2019.8808606","DOIUrl":null,"url":null,"abstract":"Increasing the speed of AFM imaging has significant benefits for academic research as well as industrial applications. In many imaging modes, the dynamic response of the cantilever probe dictates the achievable speed. Polymer cantilevers have gained great attention due to their high tracking ability and ease of fabrication. However, polymer cantilevers also have drawbacks. Polymers are not well suitable materials for the tip of the probe due to their high wear rate. This has limited the broader use of polymer cantilevers for AFM imaging. In this work, we combine the advantages of polymer cantilevers with the advantages of cantilevers made of conventional MEMS materials. We demonstrate the batch integration of a hard tip into a polymer-core multilayer cantilever probe, thereby merging speed, high-resolution and durability in a single cantilever.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"67 1","pages":"2033-2036"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing the speed of AFM imaging has significant benefits for academic research as well as industrial applications. In many imaging modes, the dynamic response of the cantilever probe dictates the achievable speed. Polymer cantilevers have gained great attention due to their high tracking ability and ease of fabrication. However, polymer cantilevers also have drawbacks. Polymers are not well suitable materials for the tip of the probe due to their high wear rate. This has limited the broader use of polymer cantilevers for AFM imaging. In this work, we combine the advantages of polymer cantilevers with the advantages of cantilevers made of conventional MEMS materials. We demonstrate the batch integration of a hard tip into a polymer-core multilayer cantilever probe, thereby merging speed, high-resolution and durability in a single cantilever.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速原子力显微镜用集成硬尖端多层聚合物悬臂梁的批量制备
提高原子力显微镜成像的速度对学术研究和工业应用都有显著的好处。在许多成像模式中,悬臂探头的动态响应决定了可实现的速度。聚合物悬臂梁因其高跟踪能力和易于制造而受到广泛关注。然而,聚合物悬臂也有缺点。聚合物由于其高磨损率而不是很适合用于探针尖端的材料。这限制了聚合物悬臂梁在AFM成像中的广泛应用。在这项工作中,我们将聚合物悬臂梁的优点与传统MEMS材料制成的悬臂梁的优点结合起来。我们演示了将硬尖端批量集成到聚合物核心多层悬臂探针中,从而将速度,高分辨率和耐用性融合在单个悬臂中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems Gan Current Transducers for Harsh Environments Harnessing Poisson Effect to Realize Tunable Tunneling Nanogap Electrodes on PDMS Substrates for Strain Sensing Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1