SAMoSA: Sensing Activities with Motion and Subsampled Audio

Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, Mayank Goel
{"title":"SAMoSA: Sensing Activities with Motion and Subsampled Audio","authors":"Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, Mayank Goel","doi":"10.1145/3550284","DOIUrl":null,"url":null,"abstract":"Despite in and human activity recognition systems, a practical, power-efficient, and privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as smartwatches. To counter the need audio-based activity system, we make use of compute-optimized IMUs sampled 50 Hz to act for detecting activity events. detected, multimodal deep augments the data captured on a smartwatch. subsample this 1 spoken unintelligible, power consumption on mobile devices. multimodal deep recognition of 92 2% 26 activities","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"18 1","pages":"132:1-132:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Despite in and human activity recognition systems, a practical, power-efficient, and privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as smartwatches. To counter the need audio-based activity system, we make use of compute-optimized IMUs sampled 50 Hz to act for detecting activity events. detected, multimodal deep augments the data captured on a smartwatch. subsample this 1 spoken unintelligible, power consumption on mobile devices. multimodal deep recognition of 92 2% 26 activities
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAMoSA:感应活动与运动和亚采样音频
尽管在人类活动识别系统中,一个实用的,节能的,隐私敏感的活动识别系统仍然是难以捉摸的。最先进的活动识别系统通常需要耗电和侵犯隐私的音频数据。这对于资源有限的可穿戴设备(如智能手表)来说尤其具有挑战性。为了满足对基于音频的活动系统的需求,我们利用计算机优化的采样50 Hz的imu来检测活动事件。检测到,多模态深度增强了智能手表上捕获的数据。子样本这1讲不清,在移动设备上耗电。多式联运深度识别92 2% 26项活动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Subject 3D Human Mesh Construction Using Commodity WiFi UHead: Driver Attention Monitoring System Using UWB Radar DeltaLCA: Comparative Life-Cycle Assessment for Electronics Design Multimodal Daily-Life Logging in Free-living Environment Using Non-Visual Egocentric Sensors on a Smartphone Lateralization Effects in Electrodermal Activity Data Collected Using Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1