Ventricle Stress/Strain Comparison Between Models Using Different Zero-Load Diastole and Systole Morphologies and Models Using Only One Zero-Load Morphologies
Han Yu, P. J. Nido, T. Geva, Chun Yang, Zheyang Wu, R. Rathod, Xueying Huang, K. Billiar, D. Tang
{"title":"Ventricle Stress/Strain Comparison Between Models Using Different Zero-Load Diastole and Systole Morphologies and Models Using Only One Zero-Load Morphologies","authors":"Han Yu, P. J. Nido, T. Geva, Chun Yang, Zheyang Wu, R. Rathod, Xueying Huang, K. Billiar, D. Tang","doi":"10.32604/MCB.2019.05837","DOIUrl":null,"url":null,"abstract":"Ventricle mechanical stress and strain calculations play an important role in cardiovascular investigations. Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricular (RV) failure. The current surgical approach, including pulmonary valve replacement(PVR), has yielded mixed results with some patients recover RV function after pulmonary valve insertion with or without concomitant RV remodeling surgery but some do not[Therrien, Siu and McLaughlin (2000);]. Cardiac magnetic resonance (CMR) data were collected from 6 healthy volunteers and 12 Tetralogy of Fallot (TOF) patients before PVR with consent obtained. 12 patients were divided into two groups depending on right ventricle post-surgery recover( 6 for each group). 3D patient-specific CMR-based ventricle models with different zero-load diastole and systole geometries were constructed to qualify right ventricle (RV) stress and strain values at begin-filling, end-filling, begin-ejection, and end-ejection, respectively. The models are solved with ADINA. Our new models (called 2G models) could provide end-diastole and end-systole stress/strain values which the old models with only one zero-load geometries (called 1G models) could not provide[Tang, Del Nido, Yang, et al., 2016]. Logistic regression with 5-fold cross validation was adopted to predict pulmonary valve replacement outcome. The results showed 2G mean end-ejection stress value from the 18 participants was 321.4% higher than that from 1G models (p=0.0002). 2G mean strain values was 230% higher than that of 1G models (p=0.0002). TOF group (TG) end-ejection mean stress value was 105.4% higher than that of healthy group (HG) (17.54±7.42kPa vs. 8.54±0.92kPa, p=0.0245). Worse outcome group (WG) begin-ejection mean stress was 57.4% higher than that of better outcome group (BG, 86.94±26.29 vs. 52.93±22.86 kPa; p=0.041). Among 7 chosen parameters (stress, strain, age, gender, right volume end-diastole volume index, right volume end-systole volume index and ejection fracture), end-filling stress was the best predictor to differentiate BG patients from WG patients with prediction accuracy = 0.8208. 2G models may provide more accurate stress/strain results than 1G models and be applied in clinical situation, potentially. Large scale studies are still needed for validation.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Ventricle mechanical stress and strain calculations play an important role in cardiovascular investigations. Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricular (RV) failure. The current surgical approach, including pulmonary valve replacement(PVR), has yielded mixed results with some patients recover RV function after pulmonary valve insertion with or without concomitant RV remodeling surgery but some do not[Therrien, Siu and McLaughlin (2000);]. Cardiac magnetic resonance (CMR) data were collected from 6 healthy volunteers and 12 Tetralogy of Fallot (TOF) patients before PVR with consent obtained. 12 patients were divided into two groups depending on right ventricle post-surgery recover( 6 for each group). 3D patient-specific CMR-based ventricle models with different zero-load diastole and systole geometries were constructed to qualify right ventricle (RV) stress and strain values at begin-filling, end-filling, begin-ejection, and end-ejection, respectively. The models are solved with ADINA. Our new models (called 2G models) could provide end-diastole and end-systole stress/strain values which the old models with only one zero-load geometries (called 1G models) could not provide[Tang, Del Nido, Yang, et al., 2016]. Logistic regression with 5-fold cross validation was adopted to predict pulmonary valve replacement outcome. The results showed 2G mean end-ejection stress value from the 18 participants was 321.4% higher than that from 1G models (p=0.0002). 2G mean strain values was 230% higher than that of 1G models (p=0.0002). TOF group (TG) end-ejection mean stress value was 105.4% higher than that of healthy group (HG) (17.54±7.42kPa vs. 8.54±0.92kPa, p=0.0245). Worse outcome group (WG) begin-ejection mean stress was 57.4% higher than that of better outcome group (BG, 86.94±26.29 vs. 52.93±22.86 kPa; p=0.041). Among 7 chosen parameters (stress, strain, age, gender, right volume end-diastole volume index, right volume end-systole volume index and ejection fracture), end-filling stress was the best predictor to differentiate BG patients from WG patients with prediction accuracy = 0.8208. 2G models may provide more accurate stress/strain results than 1G models and be applied in clinical situation, potentially. Large scale studies are still needed for validation.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.