Multi-Objective Optimization Under Uncertainty of Part Quality in Fused Filament Fabrication

B. Kapusuzoglu, Paromita Nath, Matthew Sato, S. Mahadevan, P. Witherell
{"title":"Multi-Objective Optimization Under Uncertainty of Part Quality in Fused Filament Fabrication","authors":"B. Kapusuzoglu, Paromita Nath, Matthew Sato, S. Mahadevan, P. Witherell","doi":"10.1115/1.4053181","DOIUrl":null,"url":null,"abstract":"\n This work presents a data-driven methodology for multi-objective optimization under uncertainty of process parameters in the fused filament fabrication (FFF) process. The proposed approach optimizes the process parameters with the objectives of minimizing the geometric inaccuracy and maximizing the filament bond quality of the manufactured part. First, experiments are conducted to collect data pertaining to the part quality. Then, Bayesian neural network (BNN) models are constructed to predict the geometric inaccuracy and bond quality as functions of the process parameters. The BNN model captures the model uncertainty caused by the lack of knowledge about model parameters (neuron weights) and the input variability due to the intrinsic randomness in the input parameters. Using the stochastic predictions from these models, different robustness-based design optimization formulations are investigated, wherein process parameters such as nozzle temperature, nozzle speed, and layer thickness are optimized under uncertainty for different multi-objective scenarios. Epistemic uncertainty in the prediction model and the aleatory uncertainty in the input are considered in the optimization. Finally, Pareto surfaces are constructed to estimate the trade-offs between the objectives. Both the BNN models and the effectiveness of the proposed optimization methodology are validated using actual manufacturing of the parts.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"65 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a data-driven methodology for multi-objective optimization under uncertainty of process parameters in the fused filament fabrication (FFF) process. The proposed approach optimizes the process parameters with the objectives of minimizing the geometric inaccuracy and maximizing the filament bond quality of the manufactured part. First, experiments are conducted to collect data pertaining to the part quality. Then, Bayesian neural network (BNN) models are constructed to predict the geometric inaccuracy and bond quality as functions of the process parameters. The BNN model captures the model uncertainty caused by the lack of knowledge about model parameters (neuron weights) and the input variability due to the intrinsic randomness in the input parameters. Using the stochastic predictions from these models, different robustness-based design optimization formulations are investigated, wherein process parameters such as nozzle temperature, nozzle speed, and layer thickness are optimized under uncertainty for different multi-objective scenarios. Epistemic uncertainty in the prediction model and the aleatory uncertainty in the input are considered in the optimization. Finally, Pareto surfaces are constructed to estimate the trade-offs between the objectives. Both the BNN models and the effectiveness of the proposed optimization methodology are validated using actual manufacturing of the parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔丝加工中零件质量不确定的多目标优化
本文提出了一种数据驱动的多目标优化方法,用于熔丝制造过程中工艺参数的不确定性。该方法以最小化几何误差和最大化制造零件的丝键质量为目标,对工艺参数进行优化。首先,进行实验以收集与零件质量有关的数据。然后,建立贝叶斯神经网络(BNN)模型,预测几何误差和键合质量作为工艺参数的函数。BNN模型捕获了由于缺乏对模型参数(神经元权重)的了解而引起的模型不确定性,以及由于输入参数的内在随机性而引起的输入可变性。利用这些模型的随机预测,研究了不同的基于鲁棒性的设计优化公式,其中喷嘴温度、喷嘴速度和层厚等工艺参数在不确定情况下针对不同的多目标场景进行了优化。优化时考虑了预测模型中的认知不确定性和输入中的选择性不确定性。最后,构造帕累托曲面来估计目标之间的权衡。通过零件的实际制造验证了BNN模型和所提出的优化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1