A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging

Lianlin Li, M. Hurtado, F. Xu, Bing Zhang, T. Jin, Tie Jun Xui, M. Stevanovic, A. Nehorai
{"title":"A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging","authors":"Lianlin Li, M. Hurtado, F. Xu, Bing Zhang, T. Jin, Tie Jun Xui, M. Stevanovic, A. Nehorai","doi":"10.1561/2000000103","DOIUrl":null,"url":null,"abstract":"The low-dimensional-model-based electromagnetic imaging is an emerging member of the big family of computational imaging, by which the low-dimensional models of underlying signals are incorporated into both data acquisition systems and reconstruction algorithms for electromagnetic imaging, in order to improve the imaging performance and break the bottleneck of existing electromagnetic imaging methodologies. Over the past decade, we have witnessed profound impacts of the low-dimensional models on electromagnetic imaging. However, the low-dimensional-model-based electromagnetic imaging remains at its early stage, and many Lianlin Li, Martin Hurtado, Feng Xu, Bing Chen Zhang, Tian Jin, Tie Jun Cui, Marija Nikolic Stevanovic and Arye Nehorai (2018), “A Survey on the LowDimensional-Model-based Electromagnetic Imaging”, : Vol. 12, No. 2, pp 107–199. DOI: 10.1561/2000000103.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"102 1","pages":"107-199"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The low-dimensional-model-based electromagnetic imaging is an emerging member of the big family of computational imaging, by which the low-dimensional models of underlying signals are incorporated into both data acquisition systems and reconstruction algorithms for electromagnetic imaging, in order to improve the imaging performance and break the bottleneck of existing electromagnetic imaging methodologies. Over the past decade, we have witnessed profound impacts of the low-dimensional models on electromagnetic imaging. However, the low-dimensional-model-based electromagnetic imaging remains at its early stage, and many Lianlin Li, Martin Hurtado, Feng Xu, Bing Chen Zhang, Tian Jin, Tie Jun Cui, Marija Nikolic Stevanovic and Arye Nehorai (2018), “A Survey on the LowDimensional-Model-based Electromagnetic Imaging”, : Vol. 12, No. 2, pp 107–199. DOI: 10.1561/2000000103.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低维模型的电磁成像研究进展
基于低维模型的电磁成像是计算成像大家族中的一个新兴成员,它将底层信号的低维模型纳入到电磁成像的数据采集系统和重构算法中,以提高成像性能,突破现有电磁成像方法的瓶颈。在过去的十年中,我们见证了低维模型对电磁成像的深远影响。然而,基于低维模型的电磁成像仍处于早期阶段,许多李连林,Martin Hurtado,徐峰,张兵,靳田,崔铁军,Marija Nikolic Stevanovic和Arye Nehorai(2018),“基于低维模型的电磁成像综述”,Vol. 12, No. 2, pp 107-199。DOI: 10.1561 / 2000000103。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1