Effect of Production Variables on the Physico-Mechanical Properties of Fibre-Reinforced Plastic Composites Boards Produced from Waste Paper and Re-Cycled Polyethlene
A. Lawrence, K. Rebecca, Orire Luke, Olajide Benard, Akala Abisayo, A. Olawale
{"title":"Effect of Production Variables on the Physico-Mechanical Properties of Fibre-Reinforced Plastic Composites Boards Produced from Waste Paper and Re-Cycled Polyethlene","authors":"A. Lawrence, K. Rebecca, Orire Luke, Olajide Benard, Akala Abisayo, A. Olawale","doi":"10.11648/J.IJMSA.20211001.11","DOIUrl":null,"url":null,"abstract":"The mechanical and physical properties of fibre reinforced composite boards (FRCB) made from waste paper and recycled polyethylene was investigated. The composite boards were produced at three levels of mixing ratio (50:50, 60:40 and 70:30) and three levels of board density (1000 Kg/m3, 1100 Kg/m3 and 1200 Kg/m3). The fibre from the paper served as the reinforcement while the polyethylene served as the matrix or binder to form the composite board. The board produced was subjected to different standard tests to attain mechanical and physical properties such as modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA) and thickness swelling (TS). The mean values obtained for Thickness Swelling after 24 hours and 48 hours ranged from 0.02 ± 0.04 to 6.05 ± 3.21 and 3.06 ±1.27 to 12.59 ±0.05 respectively and that of water absorption after 24 hours and 48 hours ranged from 4.68 ± 0.25 to 15.78 ± 6.15 and 5.36 ± 0.16 to 18.37 ± 6.03 respectively. The mean value for MOR and MOE ranged from 16.36 ± 9.71 to 18.17 ± 6.76 and 3813.4 ± 1938.76 to 4842.8 ± 1381.05 respectively. These results shown that both the WA and TS decreased with the increase in the board density and mixing ratio. On the other hand, MOR and MOE of the board increased with the increase of board density and the mixing ratio. The results obtained from this study shown that natural fibre from waste paper and recycled polyethylene are compatible for use to produce composite material.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211001.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical and physical properties of fibre reinforced composite boards (FRCB) made from waste paper and recycled polyethylene was investigated. The composite boards were produced at three levels of mixing ratio (50:50, 60:40 and 70:30) and three levels of board density (1000 Kg/m3, 1100 Kg/m3 and 1200 Kg/m3). The fibre from the paper served as the reinforcement while the polyethylene served as the matrix or binder to form the composite board. The board produced was subjected to different standard tests to attain mechanical and physical properties such as modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA) and thickness swelling (TS). The mean values obtained for Thickness Swelling after 24 hours and 48 hours ranged from 0.02 ± 0.04 to 6.05 ± 3.21 and 3.06 ±1.27 to 12.59 ±0.05 respectively and that of water absorption after 24 hours and 48 hours ranged from 4.68 ± 0.25 to 15.78 ± 6.15 and 5.36 ± 0.16 to 18.37 ± 6.03 respectively. The mean value for MOR and MOE ranged from 16.36 ± 9.71 to 18.17 ± 6.76 and 3813.4 ± 1938.76 to 4842.8 ± 1381.05 respectively. These results shown that both the WA and TS decreased with the increase in the board density and mixing ratio. On the other hand, MOR and MOE of the board increased with the increase of board density and the mixing ratio. The results obtained from this study shown that natural fibre from waste paper and recycled polyethylene are compatible for use to produce composite material.