Alif Walong, B. Thongnuanchan, T. Sakai, N. Lopattananon
{"title":"Influence of silicon dioxide addition and processing methods on structure, thermal stability and flame retardancy of EVA/NR blend nanocomposite foams","authors":"Alif Walong, B. Thongnuanchan, T. Sakai, N. Lopattananon","doi":"10.1177/1477760620953437","DOIUrl":null,"url":null,"abstract":"Rubber nanocomposite foams based on 60/40 ethylene vinyl acetate (EVA)/natural rubber (NR) were melt-mixed with flame retardant silicon dioxide (SiO2) (20 parts per hundred rubber, phr), and foamed by compression molding process. In this study, the effect of mixing phenomena of SiO2 through two different compounding techniques such as direct mixing (DM) and phase selective mixing (PSM) methods on structure, thermal stability, combustility and flame retardancy of EVA/NR blend nanocomposite foams were investigated. DM method is a melt mixing of EVA, NR, layered silicate and SiO2, followed by foaming. PSM is a new method based on pre-mixing EVA with SiO2, then melt mixing of EVA/SiO2 masterbatch with NR and layered silicate, and finally foaming. Based on TEM technique, it was found that the SiO2 was exclusively located in dispersed NR phase for the sample prepared by DM method, and the SiO2 was preferably dispersed in continuous EVA matrix when PSM method was employed. However, the different mixing methods did not significantly alter their cellular structures. The thermal stability and char residue content of foamed samples with SiO2 increased obviously when compared with those of corresponding foams without SiO2. The results based on limiting oxygen index (LOI) test and oxygen bomb calorimetry indicated that the foams combined with SiO2 had better combustion resistance and flame retardancy due to barrier effect of thermally stable silicon-based char layer. Further, the SiO2 filled foamed system obtained from the PSM method showed a higher degree of improvement in thermal stability, combustion resistance and flame retardancy than that of DM method because the homogeneous dispersion of SiO2 in EVA matrix rather than the selective dispersion in NR phase. This resulted in the continuity of flame retardant EVA/SiO2 phase in the 60/40 EVA/NR nanocomposite foams, which exerted more efficient fire barrier of the silicon-based char layer.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"2 1","pages":"49 - 65"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1477760620953437","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 4
Abstract
Rubber nanocomposite foams based on 60/40 ethylene vinyl acetate (EVA)/natural rubber (NR) were melt-mixed with flame retardant silicon dioxide (SiO2) (20 parts per hundred rubber, phr), and foamed by compression molding process. In this study, the effect of mixing phenomena of SiO2 through two different compounding techniques such as direct mixing (DM) and phase selective mixing (PSM) methods on structure, thermal stability, combustility and flame retardancy of EVA/NR blend nanocomposite foams were investigated. DM method is a melt mixing of EVA, NR, layered silicate and SiO2, followed by foaming. PSM is a new method based on pre-mixing EVA with SiO2, then melt mixing of EVA/SiO2 masterbatch with NR and layered silicate, and finally foaming. Based on TEM technique, it was found that the SiO2 was exclusively located in dispersed NR phase for the sample prepared by DM method, and the SiO2 was preferably dispersed in continuous EVA matrix when PSM method was employed. However, the different mixing methods did not significantly alter their cellular structures. The thermal stability and char residue content of foamed samples with SiO2 increased obviously when compared with those of corresponding foams without SiO2. The results based on limiting oxygen index (LOI) test and oxygen bomb calorimetry indicated that the foams combined with SiO2 had better combustion resistance and flame retardancy due to barrier effect of thermally stable silicon-based char layer. Further, the SiO2 filled foamed system obtained from the PSM method showed a higher degree of improvement in thermal stability, combustion resistance and flame retardancy than that of DM method because the homogeneous dispersion of SiO2 in EVA matrix rather than the selective dispersion in NR phase. This resulted in the continuity of flame retardant EVA/SiO2 phase in the 60/40 EVA/NR nanocomposite foams, which exerted more efficient fire barrier of the silicon-based char layer.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.