Keyphrase Extraction Using PageRank and Word Features

H. T. Le, Que X. Bui
{"title":"Keyphrase Extraction Using PageRank and Word Features","authors":"H. T. Le, Que X. Bui","doi":"10.1109/RIVF51545.2021.9642124","DOIUrl":null,"url":null,"abstract":"Keyphrase extraction is a fundamental task in natural language processing. Its purpose is to generate a set of keyphrases representing the main idea of the input document. Keyphrase extraction can be used in several applications such as recommendation systems, plagiarism checking, text summarization, and text retrieval. In this paper, we propose an approach using PageRank and word features to compute keyphrases’ scores. Experimental results on SemEval 2010 dataset show that our method provides promising results compared to existing works in this field.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"123 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Keyphrase extraction is a fundamental task in natural language processing. Its purpose is to generate a set of keyphrases representing the main idea of the input document. Keyphrase extraction can be used in several applications such as recommendation systems, plagiarism checking, text summarization, and text retrieval. In this paper, we propose an approach using PageRank and word features to compute keyphrases’ scores. Experimental results on SemEval 2010 dataset show that our method provides promising results compared to existing works in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关键词提取使用PageRank和词的特征
关键词提取是自然语言处理中的一项基本任务。它的目的是生成一组表示输入文档的主要思想的关键短语。关键词提取可用于推荐系统、剽窃检查、文本摘要和文本检索等多个应用程序。在本文中,我们提出了一种使用PageRank和单词特征来计算关键短语分数的方法。在SemEval 2010数据集上的实验结果表明,与该领域已有的研究成果相比,我们的方法取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1