Stationary supercapacitor energy storage operation algorithm based on neural network learning system

IF 1.2 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY Bulletin of the Polish Academy of Sciences-Technical Sciences Pub Date : 2023-11-06 DOI:10.24425/BPASTS.2020.134176
W. Jefimowski, A. Nikitenko, Z. Drążek, M. Wieczorek
{"title":"Stationary supercapacitor energy storage operation algorithm based on neural network learning system","authors":"W. Jefimowski, A. Nikitenko, Z. Drążek, M. Wieczorek","doi":"10.24425/BPASTS.2020.134176","DOIUrl":null,"url":null,"abstract":"The paper proposes to apply an algorithm for predicting the minimum level of the state of charge (SoC) of stationary supercapacitor energy storage system operating in a DC traction substation, and for changing it over time. This is done to insure maximum energy recovery for trains while braking. The model of a supercapacitor energy storage system, its algorithms of operation and prediction of the minimum state of charge are described in detail; the main formulae, graphs and results of simulation are also provided. It is proposed to divide the SoC curve into equal periods of time during which the minimum states of charge remain constant. To predict the SoC level for the subsequent period, the learning algorithm based on the neural network could be used. Then, the minimum SoC could be based on two basic types of data: the first one is the time profile of the energy storage load during the previous period with the constant minimum SoC retained, while the second one relies on the trains’ locations and speed values in the previous period. It is proved that the use of variable minimum SoC ensures an increase of the energy volume recovered by approximately 10%. Optimum architecture and activation function of the neural network are also found.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/BPASTS.2020.134176","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

The paper proposes to apply an algorithm for predicting the minimum level of the state of charge (SoC) of stationary supercapacitor energy storage system operating in a DC traction substation, and for changing it over time. This is done to insure maximum energy recovery for trains while braking. The model of a supercapacitor energy storage system, its algorithms of operation and prediction of the minimum state of charge are described in detail; the main formulae, graphs and results of simulation are also provided. It is proposed to divide the SoC curve into equal periods of time during which the minimum states of charge remain constant. To predict the SoC level for the subsequent period, the learning algorithm based on the neural network could be used. Then, the minimum SoC could be based on two basic types of data: the first one is the time profile of the energy storage load during the previous period with the constant minimum SoC retained, while the second one relies on the trains’ locations and speed values in the previous period. It is proved that the use of variable minimum SoC ensures an increase of the energy volume recovered by approximately 10%. Optimum architecture and activation function of the neural network are also found.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络学习系统的固定式超级电容器储能运行算法
本文提出了一种用于预测直流牵引变电所运行的固定式超级电容器储能系统的最低荷电状态(SoC)水平并随时间变化的算法。这样做是为了确保列车在制动时最大限度地回收能量。详细介绍了超级电容器储能系统的模型、运行算法和最小电荷状态的预测;给出了主要公式、图形和仿真结果。建议将荷电状态曲线划分为相等的时间段,在此时间段内保持最小电荷状态不变。为了预测后续阶段的SoC水平,可以使用基于神经网络的学习算法。然后,最小荷电状态可以基于两种基本类型的数据:第一种是前一时段储能负荷的时间分布,保持恒定的最小荷电状态;第二种是依赖于前一时段列车的位置和速度值。实验证明,使用可变最小SoC可确保回收的能量体积增加约10%。并给出了神经网络的最优结构和激活函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.
期刊最新文献
148439 148440 Enhancement of COVID-19 symptom-based screening with quality-based classifier optimisation Analyzing and improving tools for supporting fighting against COVID-19 based on prediction models and contact tracing The Effect of Protrusions on the Initiation of Partial Discharges in XLPE High Voltage Cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1