Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators

C. X. Yu, S. Zihlmann, Gonzalo Troncoso Fernández-Bada, J. Thomassin, F. Gustavo, É. Dumur, R. Maurand
{"title":"Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators","authors":"C. X. Yu, S. Zihlmann, Gonzalo Troncoso Fernández-Bada, J. Thomassin, F. Gustavo, É. Dumur, R. Maurand","doi":"10.1063/5.0039945","DOIUrl":null,"url":null,"abstract":"We characterize niobium nitride $\\lambda/2$ coplanar waveguide resonators, which were fabricated from a 10nm thick film on silicon dioxide grown by sputter deposition. For films grown at 120°C we report a superconducting critical temperature of 7.4K associated with a normal square resistance of 1k$\\Omega$ leading to a kinetic inductance of 192pH/$\\Box$. We fabricated resonators with a characteristic impedance up to 4.1k$\\Omega$ and internal quality factors $Q_\\mathrm{i} > 10^4$ in the single photon regime at zero magnetic field. Moreover, in the many photons regime, the resonators present high magnetic field resilience with $Q_\\mathrm{i} > 10^4$ in a 6T in-plane magnetic field as well as in a 300mT out-of-plane magnetic field. These findings make such resonators a compelling choice for cQED experiments involving quantum systems with small electric dipole moments operated in finite magnetic fields.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0039945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We characterize niobium nitride $\lambda/2$ coplanar waveguide resonators, which were fabricated from a 10nm thick film on silicon dioxide grown by sputter deposition. For films grown at 120°C we report a superconducting critical temperature of 7.4K associated with a normal square resistance of 1k$\Omega$ leading to a kinetic inductance of 192pH/$\Box$. We fabricated resonators with a characteristic impedance up to 4.1k$\Omega$ and internal quality factors $Q_\mathrm{i} > 10^4$ in the single photon regime at zero magnetic field. Moreover, in the many photons regime, the resonators present high magnetic field resilience with $Q_\mathrm{i} > 10^4$ in a 6T in-plane magnetic field as well as in a 300mT out-of-plane magnetic field. These findings make such resonators a compelling choice for cQED experiments involving quantum systems with small electric dipole moments operated in finite magnetic fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场弹性高动感超导氮化铌共面波导谐振器
我们对氮化铌$\lambda/2$共面波导谐振器进行了表征,该共面波导谐振器是在10nm厚的二氧化硅薄膜上溅射沉积而成的。对于在120°C下生长的薄膜,我们报告了超导临界温度为7.4K,正常平方电阻为1k $\Omega$,导致动力学电感为192pH/ $\Box$。我们在零磁场的单光子状态下制作了特征阻抗高达4.1k $\Omega$和内部质量因子$Q_\mathrm{i} > 10^4$的谐振器。此外,在多光子状态下,谐振器在6T的面内磁场和300mT的面外磁场中具有$Q_\mathrm{i} > 10^4$的高磁场弹性。这些发现使这种谐振器成为在有限磁场中运行的具有小电偶极矩的量子系统的cQED实验的一个引人注目的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1