Reinforcement Learning Compensation based PD Control for Inverted Pendulum

Guillermo Puriel-Gil, Wen Yu, Juan Humberto Sossa Azuela
{"title":"Reinforcement Learning Compensation based PD Control for Inverted Pendulum","authors":"Guillermo Puriel-Gil, Wen Yu, Juan Humberto Sossa Azuela","doi":"10.1109/ICEEE.2018.8533946","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Control Algorithm based on Reinforcement Learning for an inverted pendulum. By implementing the Q-Learning techniques in the PD control scheme, the pendulum is enabled to improve its online performance and adapt to changes in the parameters of the pendulum model. In a first step, Q-Learning is used so that the control can balance the pendulum towards its inverted vertical position; In a second step, we combine hybrid techniques of Q-Learning and PD control. With this combination, we can bring the pendulum to its inverted vertical position, regardless of the applied disturbance. Finally, the results of the simulation show the effectiveness of the proposed controller.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a Control Algorithm based on Reinforcement Learning for an inverted pendulum. By implementing the Q-Learning techniques in the PD control scheme, the pendulum is enabled to improve its online performance and adapt to changes in the parameters of the pendulum model. In a first step, Q-Learning is used so that the control can balance the pendulum towards its inverted vertical position; In a second step, we combine hybrid techniques of Q-Learning and PD control. With this combination, we can bring the pendulum to its inverted vertical position, regardless of the applied disturbance. Finally, the results of the simulation show the effectiveness of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习补偿的倒立摆PD控制
本文提出了一种基于强化学习的倒立摆控制算法。通过在PD控制方案中实现Q-Learning技术,使摆摆能够提高其在线性能并适应摆摆模型参数的变化。第一步,使用Q-Learning,使控制能够平衡摆到倒立的垂直位置;在第二步中,我们结合了Q-Learning和PD控制的混合技术。通过这种组合,我们可以使摆摆处于倒立的垂直位置,而不管施加的扰动是什么。最后,仿真结果表明了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Transmission Between Two Wireless Devices Based on Radio-over-Fiber Technology CCE 2018 Tutorial Validation of an EMG sensor for Internet of Things and Robotics Robust Control for Stabilization of Non-Inertial System: Pendulum-Acrobot Design of Log-Periodic Dipole Array Antenna with Implemmented Extra Dipole
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1