Hyperspectral Image Clustering based on Variational Expectation Maximization

Yuchen Jiao, Yirong Ma, Yuantao Gu
{"title":"Hyperspectral Image Clustering based on Variational Expectation Maximization","authors":"Yuchen Jiao, Yirong Ma, Yuantao Gu","doi":"10.1109/SAM48682.2020.9104375","DOIUrl":null,"url":null,"abstract":"Hyperspectral image clustering is an important and challenging problem, which aims to group image pixels according to the land cover information extracted from the spectrum. The spectrum observed at adjacent pixels are often highly-correlated, and leveraging such spatial correlation can greatly improve the clustering accuracy. Markov Random Field (MRF) is a powerful model to characterize such correlation. However, in this model the spatial parameter β often needs to be manually tuned, which brings difficulty in finding an optimal value. In this paper, we propose a novel hyperspectral clustering algorithm, which is able to learn parameter β from the data and thus achieves better performance. Specifically, we model the spectral information with Gaussian mixture model, and use variational expectation maximization method to complete the parameter estimation and clustering task. Experiments on both synthetic and real-world data sets verify the effectiveness of the proposed algorithm.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"102 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hyperspectral image clustering is an important and challenging problem, which aims to group image pixels according to the land cover information extracted from the spectrum. The spectrum observed at adjacent pixels are often highly-correlated, and leveraging such spatial correlation can greatly improve the clustering accuracy. Markov Random Field (MRF) is a powerful model to characterize such correlation. However, in this model the spatial parameter β often needs to be manually tuned, which brings difficulty in finding an optimal value. In this paper, we propose a novel hyperspectral clustering algorithm, which is able to learn parameter β from the data and thus achieves better performance. Specifically, we model the spectral information with Gaussian mixture model, and use variational expectation maximization method to complete the parameter estimation and clustering task. Experiments on both synthetic and real-world data sets verify the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变分期望最大化的高光谱图像聚类
高光谱图像聚类是一个重要且具有挑战性的问题,其目的是根据从光谱中提取的土地覆盖信息对图像像素进行分组。在相邻像素处观测到的光谱通常是高度相关的,利用这种空间相关性可以大大提高聚类精度。马尔可夫随机场(MRF)是表征这种相关性的有力模型。然而,在该模型中,空间参数β往往需要手动调整,这给找到最优值带来了困难。本文提出了一种新的高光谱聚类算法,该算法能够从数据中学习参数β,从而获得更好的性能。具体来说,我们采用高斯混合模型对光谱信息进行建模,并使用变分期望最大化方法完成参数估计和聚类任务。在合成数据集和实际数据集上的实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1