PyRosetta Jupyter Notebooks Teach Biomolecular Structure Prediction and Design.

Kathy H. Le, Jared Adolf-Bryfogle, Jason Christopher Klima, Sergey Lyskov, Jason W. Labonte, S. Bertolani, S. Burman, Andrew Leaver-Fay, Brian D. Weitzner, Jack B. Maguire, R. Rangan, Matt A. Adrianowycz, Rebecca F. Alford, Aleexan Adal, Morgan L. Nance, Rhiju Das, Roland L. Dunbrack, W. Schief, B. Kuhlman, J. Siegel, Jeffrey J. Gray
{"title":"PyRosetta Jupyter Notebooks Teach Biomolecular Structure Prediction and Design.","authors":"Kathy H. Le, Jared Adolf-Bryfogle, Jason Christopher Klima, Sergey Lyskov, Jason W. Labonte, S. Bertolani, S. Burman, Andrew Leaver-Fay, Brian D. Weitzner, Jack B. Maguire, R. Rangan, Matt A. Adrianowycz, Rebecca F. Alford, Aleexan Adal, Morgan L. Nance, Rhiju Das, Roland L. Dunbrack, W. Schief, B. Kuhlman, J. Siegel, Jeffrey J. Gray","doi":"10.20944/preprints202002.0097.v1","DOIUrl":null,"url":null,"abstract":"Biomolecular structure drives function, and computational capabilities have progressed such that the prediction and computational design of biomolecular structures is increasingly feasible. Because computational biophysics attracts students from many different backgrounds and with different levels of resources, teaching the subject can be challenging. One strategy to teach diverse learners is with interactive multimedia material that promotes self-paced, active learning. We have created a hands-on education strategy with a set of sixteen modules that teach topics in biomolecular structure and design, from fundamentals of conformational sampling and energy evaluation to applications like protein docking, antibody design, and RNA structure prediction. Our modules are based on PyRosetta, a Python library that encapsulates all computational modules and methods in the Rosetta software package. The workshop-style modules are implemented as Jupyter Notebooks that can be executed in the Google Colaboratory, allowing learners access with just a web browser. The digital format of Jupyter Notebooks allows us to embed images, molecular visualization movies, and interactive coding exercises. This multimodal approach may better reach students from different disciplines and experience levels as well as attract more researchers from smaller labs and cognate backgrounds to leverage PyRosetta in their science and engineering research. All materials are freely available at https://github.com/RosettaCommons/PyRosetta.notebooks.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":"5 1","pages":"108-122"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202002.0097.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Biomolecular structure drives function, and computational capabilities have progressed such that the prediction and computational design of biomolecular structures is increasingly feasible. Because computational biophysics attracts students from many different backgrounds and with different levels of resources, teaching the subject can be challenging. One strategy to teach diverse learners is with interactive multimedia material that promotes self-paced, active learning. We have created a hands-on education strategy with a set of sixteen modules that teach topics in biomolecular structure and design, from fundamentals of conformational sampling and energy evaluation to applications like protein docking, antibody design, and RNA structure prediction. Our modules are based on PyRosetta, a Python library that encapsulates all computational modules and methods in the Rosetta software package. The workshop-style modules are implemented as Jupyter Notebooks that can be executed in the Google Colaboratory, allowing learners access with just a web browser. The digital format of Jupyter Notebooks allows us to embed images, molecular visualization movies, and interactive coding exercises. This multimodal approach may better reach students from different disciplines and experience levels as well as attract more researchers from smaller labs and cognate backgrounds to leverage PyRosetta in their science and engineering research. All materials are freely available at https://github.com/RosettaCommons/PyRosetta.notebooks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyRosetta Jupyter笔记本教授生物分子结构预测和设计。
生物分子结构驱动功能,计算能力的进步使得生物分子结构的预测和计算设计越来越可行。由于计算生物物理学吸引了来自不同背景和不同资源水平的学生,因此教学这门学科可能具有挑战性。教授不同学习者的一种策略是使用交互式多媒体材料,促进自主学习和主动学习。我们创建了一套实践教学策略,包含16个模块,教授生物分子结构和设计的主题,从构象采样和能量评估的基础知识到蛋白质对接、抗体设计和RNA结构预测等应用。我们的模块基于PyRosetta,这是一个Python库,它封装了Rosetta软件包中的所有计算模块和方法。讲习班风格的模块被实现为Jupyter笔记本,可以在Google协作实验室中执行,允许学习者仅通过网络浏览器访问。Jupyter notebook的数字格式允许我们嵌入图像、分子可视化电影和交互式编码练习。这种多模式的方法可以更好地接触到来自不同学科和经验水平的学生,并吸引更多来自小型实验室和同类背景的研究人员利用PyRosetta进行科学和工程研究。所有材料均可在https://github.com/RosettaCommons/PyRosetta.notebooks免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Image Processing and Optical Engineering to University Biology Students Implementation of Specifications Grading in an Upper-Division Chemical Biology Lecture Course Undergraduate Tutorial for Simulating Flocking with the Vicsek Model Bringing Biophysics Outreach to a Rural County Fair Modular, Articulated Models of DNA and Peptide Nucleic Acids for Nanotechnology Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1