Siteng Chen, Dandan Song, Lei Chen, Tuanjie Guo, Beibei Jiang, Aie Liu, Xianpan Pan, Tao Wang, Heting Tang, Guihua Chen, Zhong Xue, Xiang Wang, Ning Zhang, Junhua Zheng
{"title":"Artificial intelligence-based non-invasive tumor segmentation, grade stratification and prognosis prediction for clear-cell renal-cell carcinoma.","authors":"Siteng Chen, Dandan Song, Lei Chen, Tuanjie Guo, Beibei Jiang, Aie Liu, Xianpan Pan, Tao Wang, Heting Tang, Guihua Chen, Zhong Xue, Xiang Wang, Ning Zhang, Junhua Zheng","doi":"10.1093/pcmedi/pbad019","DOIUrl":null,"url":null,"abstract":"Abstract Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13–5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58–4.84, P = 0.0019), 3.83 (95%CI: 1.22–11.96, P = 0.029), and 2.80 (95%CI: 1.05–7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options.","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"323 1","pages":"pbad019"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbad019","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13–5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58–4.84, P = 0.0019), 3.83 (95%CI: 1.22–11.96, P = 0.029), and 2.80 (95%CI: 1.05–7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.