REDUCTION OF PRODUCTION CYCLE TIME OF WIND TURBINE BLADES

S. Karinka, Aniketan Bekal, Rakesh ., S. Acharya
{"title":"REDUCTION OF PRODUCTION CYCLE TIME OF WIND TURBINE BLADES","authors":"S. Karinka, Aniketan Bekal, Rakesh ., S. Acharya","doi":"10.26480/jmerd.05.2019.97.100","DOIUrl":null,"url":null,"abstract":"For any manufacturing industry, cycle time optimization is very important in order to maximize the production capacity with the effective use of time. The objective of this project is to calculate and analyze cycle time of main moulding process of wind turbine blade of 50 meters and above length. The time analysis was made by noting down start and end time of each event in moulding process. The time analysis data, which was taken, was transferred to excel sheets and Gap analysis and Pareto charts were drawn. Based on the data gathered, delay time was analyzed for each event in the process and also the key factors which caused the delay was found. The result obtained from the chart can be used to reduce the key factors which caused the delay in the production time. From the data collected and analyzed, it can be concluded that the major delay reasons in the main moulding process is due to layer missing from MPRP (Material preparation), repairs, x-shell induced delay. Humidity is also found to be a major contributor to delay in monsoon.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/jmerd.05.2019.97.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

For any manufacturing industry, cycle time optimization is very important in order to maximize the production capacity with the effective use of time. The objective of this project is to calculate and analyze cycle time of main moulding process of wind turbine blade of 50 meters and above length. The time analysis was made by noting down start and end time of each event in moulding process. The time analysis data, which was taken, was transferred to excel sheets and Gap analysis and Pareto charts were drawn. Based on the data gathered, delay time was analyzed for each event in the process and also the key factors which caused the delay was found. The result obtained from the chart can be used to reduce the key factors which caused the delay in the production time. From the data collected and analyzed, it can be concluded that the major delay reasons in the main moulding process is due to layer missing from MPRP (Material preparation), repairs, x-shell induced delay. Humidity is also found to be a major contributor to delay in monsoon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缩短风机叶片的生产周期
对于任何制造行业来说,为了有效利用时间最大化生产能力,周期时间优化都是非常重要的。本项目的目的是对50米及以上长度的风力机叶片主要成型工艺的周期时间进行计算和分析。通过记录成型过程中各事件的开始和结束时间,进行时间分析。将所采集的时间分析数据转换为excel表格,绘制Gap分析和Pareto图。根据收集到的数据,分析了过程中每个事件的延迟时间,并找出了导致延迟的关键因素。从图表中得到的结果可以用来减少导致生产时间延迟的关键因素。从收集和分析的数据可以得出结论,主要成型过程中的主要延迟原因是由于MPRP(材料制备),修理,x壳引起的延迟。湿度也被发现是季风延迟的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
期刊最新文献
Disassembling Process Inference Using Positional Relations Matrix for Complicated Machines Modeling of a Zero CO2 and Zero Heat Pollution Compressed Air Engine for the Urban Transport Sector Tools and Computational Machinery for Movement Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1