Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude

M. V. Levskii
{"title":"Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude","authors":"M. V. Levskii","doi":"10.30564/jmer.v4i2.3725","DOIUrl":null,"url":null,"abstract":"We apply the method of guidance by a required velocity for solving theoptimal control problem over spacecraft’s reorientation from known initialattitude into a required final attitude. We suppose that attitude control iscarried out by impulse jet engines. For optimization of fuel consumption,the controlling moments are calculated and formed according to themethod of free trajectories together with principle of iterative controlusing the quaternions for generating commands to actuators. Optimalsolution corresponds to the principle “acceleration - free rotation - separatecorrections - free rotation - braking”. Rotation along a hitting trajectory issupported by insignificant correction of the uncontrolled motion at discreteinstants between segments of acceleration and braking. Various strategies在自由运动阶段形成校正脉冲的方法是建议。提高实现航天器最终位置的准确性通过终端控制使用有关当前姿态的信息和用于确定开始时刻的角速度测量制动(根据实际运动参数开始制动的条件以分析形式制定)。所描述的方法是通用的并且相对于转动惯量不变。发展的态度法则控制涉及具有预测模型的算法,综合控制模式对于外部扰动和参数错误。数学建模的结果表明证明设计算法的实际可行性和高效率。","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmer.v4i2.3725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

We apply the method of guidance by a required velocity for solving theoptimal control problem over spacecraft’s reorientation from known initialattitude into a required final attitude. We suppose that attitude control iscarried out by impulse jet engines. For optimization of fuel consumption,the controlling moments are calculated and formed according to themethod of free trajectories together with principle of iterative controlusing the quaternions for generating commands to actuators. Optimalsolution corresponds to the principle “acceleration - free rotation - separatecorrections - free rotation - braking”. Rotation along a hitting trajectory issupported by insignificant correction of the uncontrolled motion at discreteinstants between segments of acceleration and braking. Various strategies在自由运动阶段形成校正脉冲的方法是建议。提高实现航天器最终位置的准确性通过终端控制使用有关当前姿态的信息和用于确定开始时刻的角速度测量制动(根据实际运动参数开始制动的条件以分析形式制定)。所描述的方法是通用的并且相对于转动惯量不变。发展的态度法则控制涉及具有预测模型的算法,综合控制模式对于外部扰动和参数错误。数学建模的结果表明证明设计算法的实际可行性和高效率。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
要求速度导引法在航天器姿态控制中的应用
We apply the method of guidance by a required velocity for solving theoptimal control problem over spacecraft’s reorientation from known initialattitude into a required final attitude. We suppose that attitude control iscarried out by impulse jet engines. For optimization of fuel consumption,the controlling moments are calculated and formed according to themethod of free trajectories together with principle of iterative controlusing the quaternions for generating commands to actuators. Optimalsolution corresponds to the principle “acceleration - free rotation - separatecorrections - free rotation - braking”. Rotation along a hitting trajectory issupported by insignificant correction of the uncontrolled motion at discreteinstants between segments of acceleration and braking. Various strategies在自由运动阶段形成校正脉冲的方法是建议。提高实现航天器最终位置的准确性通过终端控制使用有关当前姿态的信息和用于确定开始时刻的角速度测量制动(根据实际运动参数开始制动的条件以分析形式制定)。所描述的方法是通用的并且相对于转动惯量不变。发展的态度法则控制涉及具有预测模型的算法,综合控制模式对于外部扰动和参数错误。数学建模的结果表明证明设计算法的实际可行性和高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
期刊最新文献
Disassembling Process Inference Using Positional Relations Matrix for Complicated Machines Modeling of a Zero CO2 and Zero Heat Pollution Compressed Air Engine for the Urban Transport Sector Tools and Computational Machinery for Movement Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1