Distributed MapReduce framework using distributed hash table

Chuan-Feng Chiu, S. J. Hsu, S. Jan
{"title":"Distributed MapReduce framework using distributed hash table","authors":"Chuan-Feng Chiu, S. J. Hsu, S. Jan","doi":"10.1109/ICAWST.2013.6765487","DOIUrl":null,"url":null,"abstract":"In past years, Cloud computing is gained more attention in industry and academic area. The advance technologies are needed to match the demand of the development of cloud computing. MapReduce is one of the enabling technology. MapReduce is a programming model supporting parallel computation especially for data-intensive cloud computing applications. However, MapReduce needs a master node to coordinate the execution of the parallel computation. This may cause communication bottleneck and single point of failure error. Therefore, in this paper we propose a distributed MapReduce framework based on Distributed Hash Tables to support large scale cloud computing applications.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"38 1","pages":"475-481"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In past years, Cloud computing is gained more attention in industry and academic area. The advance technologies are needed to match the demand of the development of cloud computing. MapReduce is one of the enabling technology. MapReduce is a programming model supporting parallel computation especially for data-intensive cloud computing applications. However, MapReduce needs a master node to coordinate the execution of the parallel computation. This may cause communication bottleneck and single point of failure error. Therefore, in this paper we propose a distributed MapReduce framework based on Distributed Hash Tables to support large scale cloud computing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用分布式哈希表的分布式MapReduce框架
近年来,云计算在工业界和学术界受到越来越多的关注。需要先进的技术来适应云计算的发展需求。MapReduce是使能技术之一。MapReduce是一种支持并行计算的编程模型,特别适用于数据密集型云计算应用。然而,MapReduce需要一个主节点来协调并行计算的执行。这可能导致通信瓶颈和单点故障错误。因此,本文提出了一种基于分布式哈希表的分布式MapReduce框架,以支持大规模的云计算应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1