{"title":"A predictive model of music preference using pairwise comparisons","authors":"B. S. Jensen, J. S. Gallego, Jan Larsen","doi":"10.1109/ICASSP.2012.6288294","DOIUrl":null,"url":null,"abstract":"Music recommendation is an important aspect of many streaming services and multi-media systems, however, it is typically based on so-called collaborative filtering methods. In this paper we consider the recommendation task from a personal viewpoint and examine to which degree music preference can be elicited and predicted using simple and robust queries such as pairwise comparisons. We propose to model - and in turn predict - the pairwise music preference using a very flexible model based on Gaussian Process priors for which we describe the required inference. We further propose a specific covariance function and evaluate the predictive performance on a novel dataset. In a recommendation style setting we obtain a leave-one-out accuracy of 74% compared to 50% with random predictions, showing potential for further refinement and evaluation.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"1977-1980"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Music recommendation is an important aspect of many streaming services and multi-media systems, however, it is typically based on so-called collaborative filtering methods. In this paper we consider the recommendation task from a personal viewpoint and examine to which degree music preference can be elicited and predicted using simple and robust queries such as pairwise comparisons. We propose to model - and in turn predict - the pairwise music preference using a very flexible model based on Gaussian Process priors for which we describe the required inference. We further propose a specific covariance function and evaluate the predictive performance on a novel dataset. In a recommendation style setting we obtain a leave-one-out accuracy of 74% compared to 50% with random predictions, showing potential for further refinement and evaluation.